

APPROVAL CITY & SOUTHWEST ACOUSTICS ADVISOR

Review of:	Barangaroo Metro Station Noise & Vibration Monitoring Report September 2021 to March 2022	Document reference:	SMCSWSBR-BWC-SBR-EM- REP-003986
Prepared by:	Acoustics Advisor		Version 01
Date of issue:	1 September 2022		23 August 2022

As approved Acoustics Advisor for the Sydney Metro City & Southwest project, I have reviewed and provided comment on the Noise and Vibration Monitoring Report September 2021 to March 2022 for the Barangaroo Metro Station, as required under A27 (d) of the project approval conditions.

This report is to be submitted to the NSW Department of Planning and Environment in accordance with Condition of Approval C16 and the Barangaroo Metro Station Construction Noise and Vibration Management Plan (CNVMP).

I have reviewed the report and am satisfied that my comments have been adequately addressed and that it meets the requirements of the Barangaroo Metro Station CNVMP. I endorse the report.

City & Southw

, City & Southwest Acoustics Advisor

Barangaroo Metro Station

Noise & Vibration Monitoring Report

September 2021 to March 2022

23 August 2022

Caption: Queensland Country Bank Stadium, Townsville

Contents

Noise & Vibration Monitoring Report

1.	Introduction	1
2.	Purpose	2
3.	Construction Activities	3
4.	Monitoring Criteria	4
5.	Methodology	6
6.	Conclusion	4

Appendices

Appendix A Real-time noise monitoring results

Appendix B Calibration Certificates

Appendix C Real-time vibration monitoring results

Project overview

Project Site Address:	BESIX Watpac State Division Address:
Hickson Road	Level 24, 44 Market Street
Barangaroo	SYDNEY
NSW 2000	NSW 2000
Project Commencement Date:	BESIX Watpac ABN:
12 March 2021	71 010 462 816

Document Control

Client:	Transport for NSW – Sydney Metro
Title:	BARANGAROO STATION
Subtitle:	Noise and Vibration Monitoring Report
Owner / Approver:	Planning & Environment Manager / Project Director
TB Document Reference:	SMCSWSBR-BWC-SBR-EM-REP-003986
TB Revision:	В

Revision History

Version	Date	Revision Description	Release Sign off
00	07/06/22	Revised to address AA comments	/ Snr. Construction Manager
01	23/08/22	Final Revision	/ Snr. Construction Manager

BESIX Watpac Approvals

Name	Role & Title	Signature	Date
	Author / Planning & Environment Manager		23/08/22
	Reviewer / Senior Project Manager		23/08/22

Note: A controlled copy of the Noise and Vibration Monitoring Report will be distributed to the Sydney Metro Principal's Representative, Environmental Representative (ER), the Acoustic Advisor (AA) and other nominated stakeholders, and it will be made available to all BR COP employees and subcontractors in soft copy format through the project document control system.

This document, when printed, will be uncontrolled and it will the responsibility of each user to confirm the currency of the plan through the project document control system.

1. Introduction

The Sydney Metro City & Southwest Project is a 30-kilometre metro railway between Chatswood and Bankstown including 17 kilometres of new tunnels from Chatswood to Sydenham travelling under Sydney Harbour connecting 7 new underground stations at Crows Nest, Victoria Cross (North Sydney), Barangaroo, Pitt Street, Martin Place, Central and Waterloo. Upgrading 13 kilometres of the Bankstown line including 11 existing stations at Sydenham, Marrickville, Dulwich Hill, Hurlstone Park, Canterbury, Campsie, Belmore, Lakemba, Wiley Park, Punchbowl and Bankstown plus service facilities.

BESIX Watpac have been engaged by Sydney Metro to build the Barangaroo Station Construct Only Package (BR COP), forming part of the broader Sydney Metro City & Southwest Chatswood to Sydenham project.

The project site is located North of the Barangaroo precinct below Hickson Road on the North-western edge of the Sydney CBD and adjacent to Nawi Cove as shown in Figure 1. The station is the most northerly of the CBD stations.

Figure 1 - Location of Barangaroo Station

2. Purpose

This Noise and Vibration Management Report (NVMR) is a summary of all noise and vibration monitoring conducted over the 6-month period from the commencement of Construction on 16th September 2021 to 15th March 2022.

The Noise and Vibration Management Plan (CNVMP) outlines in Appendix E a Construction Noise and Vibration Monitoring Program which details the monitoring required by Condition of Approval (CoA) C10 and the frequency of reporting. The Construction Noise and Vibration Monitoring Program has been endorsed by the Acoustic Advisor (AA) and approved by the Secretary in accordance with CoA C13.

CoA C16 required the results of the monitoring program to be provided to the Secretary for information at the frequency identified in the program. The approved monitoring program states that the details of the noise and vibration monitoring will be reported on a six-monthly basis.

The independent Acoustic Advisor will be provided the report for endorsement prior to submission to the Secretary for information by Sydney Metro.

The applicable CoAs are shown in Table 1 below:

Condition		Reference
C9	The following Construction Monitoring Programs must be prepared in consultation with the relevant government agencies identified for each Construction Monitoring Program to compare actual performance of construction of the CSSI against predicted performance. Required Construction Monitoring Programs and (Relevant government agencies to be consulted for each Construction Monitoring Program) Noise and Vibration (EPA and Relevant Council(s) Blasting (EPA and Relevant Council(s)) Water Quality – (EPA and Relevant Council(s)) Groundwater – (DPI Water)	Noise and Vibration – refer to the Construction Noise and Vibration Management Plan Blasting – Not applicable (Appendix A Staging Report) Water Quality – Not applicable (Appendix A Staging Report) Groundwater – Not applicable (Appendix A – Staging Report)
C16	The results of the Construction Monitoring Programs must be submitted to the Secretary for information, and relevant regulatory agencies, for information in the form of a Construction Monitoring Report at the frequency identified in the relevant Construction Monitoring Program	This report

3. Construction Activities

Construction activities occurring on site during the reporting period have compromised the following:

- Deliveries
- Demolition of existing temporary steel and concrete access bridges
- Civil works including the installation of a stormwater trunk main, HV cabling and utility services installations
- Waterproofing of the roof of the station box
- Fit-out of the station box including services reticulation, installation of escalators, structural steelwork, precast concrete platform elements and blockworks walls

3.1 Standard Construction Hours

Construction has been carried out in accordance with the hours as outlined in CoA E36 as follows:

- 07.00am to 6:00pm Mondays to Fridays, inclusive
- 08.00am to 1.00pm Saturdays; and
- At no times on Sundays or public holidays

3.2 Out of Hours Construction Summary

Construction has been undertaken out of hours under CoA E44 and E47 under the approved Out of Hours Works Applications (OOHWA) listed in Table 2:

OOHWA	Works description	Approval	Approved Duration
OOHW-001	Deliveries	E48	September 2021 – December 2022
OOHWA-002	Station Works	E48	October 2021 – June 2022
OOHWA-003	Civil works – bridge jacking	E44(d)	October 2021 – November 2021
OOHWA-004	High voltage installation	E44(f)	October 2021 – November 2021
OOHWA-005	Ausgrid pit investigation	E44(f)	14 November 2021 – 15 November 2021
OOHWA-006	Civil Works Hickson Road	E44(f)	December 2021 – May 2022

 Table 2 Approved Out of Hours Applications

3.3 Emergency Construction

Construction has been carried out as emergency construction in accordance with CoA E44b on one occasion during the reporting period. The hoist used as an emergency egress route out of the cross-over cavern was faulty and needed to be replaced to ensure emergency egress into / out of the station be always maintained. The works took place on 16/10/21 and 17/10/21. The Acoustic Advisor and Environmental representative were notified in accordance with CoA E45 and an Emergency Works report produced to satisfy Section 4.4 of the *Sydney Metro City & Southwest Out of Hours Work Strategy / Protocol.*

4. Monitoring Criteria

4.1 Noise Monitoring Criteria

The following noise parameters are required to be measured when assessing construction noise levels:

- LA1(1minute) The typical 'maximum noise level for an event', used in the assessment of potential sleep disturbance during night-time periods. Alternatively, assessment may be conducted using the LAmax or maximum noise level.
- LAeq(15minute) The "energy average noise level" evaluated over a 15-minute period. This parameter
 is used to assess the potential construction noise impacts and to assess compliance with the relevant
 internal or external NMLs
- LA90 The "background noise level" or Rating Background Level" (RBL) in the absence of construction activities. This parameter represents the average minimum noise level during the daytime, evening and night-time periods respectively. The LAeq (15 minute) construction noise management levels (NMLs) are based on the RBLs.
- The subscript "A" indicates that the noise levels are filtered to match normal hearing characteristics (A weighted)

The NSW EPA Interim Construction Noise Guideline (ICNG) requires project specific Noise Management Levels (NMLs) to be established for noise affected receivers. Two site-specific Construction Noise and Vibration Impact Statements (CNVISs) has been prepared in accordance with CoA E33. Each CNVIS was prepared prior to the commencement of construction before noise and vibration impacts commenced and included specific mitigation measures adopted and predict noise impacts to nearby sensitive receivers. One CNVIS has been prepared for above-ground civil and landscaping construction activities (Civil CNVIS) and a second for construction activities taking place within the station box itself (Station CNVIS). In the event construction noise levels are predicted to be above the NMLs, all feasible and reasonable work practices are investigated to minimise noise emissions.

Environmental noise monitoring (excluding spot checks of plant and equipment) have been recorded over 15-minute sample intervals, excluding periods of extraneous noise until a representative sample has been obtained. A representative sample will be determined by the operator, who will be competent, suitability trained and experienced in undertaking noise measurements and familiar with the relevant Australian Standards.

For spot checks of noise intensive plant and equipment, duration of monitoring will depend on the source of noise being monitored. Sources of continuous noise (such as generators or fans), measurements will be monitored over one-to-two-minute intervals. For dynamic plant, such as front-end loaders, spot checks will capture a representative activity, such as one truck-and-trailer load cycle

Table 3 below which is reproduced from Addendum A of Sydney Metro CNVS sets out the internal noise criteria for residential and other sensitive receivers. The Barangaroo Metro station falls within an Identified Precinct in accordance with CoA E37.

Area	Receiver Type	Approved Condition	Time Period	Criteria (internal) ⁴
Identified Precincts ¹	All	E38	7am to 8pm	Noise levels are required to be less than LAeq (15 minute) 60 dB(A) for at least 6.5 hours between 7am and 8pm, of which at least 3.25 hours must be below LAeq (15 minute) 55 dB(A).
				Noise equal to or above LAeq (15 minute) 60 dB(A) is allowed for the remaining 6.5 hours between 7am and 8pm. ³

Table 3 Internal construction noise criteria levels (Conditions of Approval)

Area	Receiver Type	Approved Condition	Time Period	Criteria (internal)⁴
Non-residential zones ²	Residential	E41	8pm to 9pm 9pm to 7am	LAeq (15 minute) 60 dB(A) LAeq (15 minute) 45 dB(A)
Residential zones ²	Residential	E42	8pm to 7am	LAeq (15 minute) 45 dB(A)
All	All	E43	All	LAeq (8 hour) 85 dB(A) (external) near the CSSI

Notes:

- 1.) Identified precincts are provided in CoA E37 and include Crows Nest, Victoria Cross, Barangaroo, Martin Place and Pitt Street
- 2.) These are identified by the applicable Local Environmental Plan land zoning of the receiver
- 3.) Criteria as described in CoA E38
- 4.) A 5 dB penalty shall be applied if rock breaking or any other annoying activity likely to result in ground-borne noise or a perceptible level of vibration is planned

4.2 Vibration Monitoring Criteria

The following vibration screening criterial have been applied:

- Reinforced or frame structures 25.0mm/s
- Unreinforced or light framed structures 7.5mm/s
- Heritage structures⁵ 2.5mm/s

Notes:

5.) If a heritage structure is predicted to be exposed to vibration levels above the conserva ive vibra ion screening level of 2.5mm/s, further investigation would be undertaken to determine whether the structure is structurally sound.

5. Methodology

The Construction Noise and Vibration Monitoring Program is designed to compare actual performance of construction of the CSSI against predicted performance and to assess the effectiveness of the mitigation measures applied during construction of the Project. The program has been executed in accordance with Appendix E of the CNVMP. The Construction Monitoring Program commenced 16 September 2021 at Construction commencement and will continue for the duration of the project.

5.1 Monitoring Locations

Real-time noise and vibration monitors have been established on site, based on the recommendations of the acoustic engineer Renzo Tonin, and as shown in the Construction Noise and Vibration Management Plan (CNVMP).

The positions of noise and vibration monitors are shown below in Figure 2.

Figure 2 – Location of on-site Noise and Vibration monitors

5.2 Monitoring Equipment

The monitors used for the various monitoring completed during the reporting period are outlined in Table 4 below. Attended monitors were field calibrated before each field measurement

Table 4 -	Monitoring	Equipment	Details
-----------	------------	-----------	---------

Equipment Details	Monitoring Type	Location	Serial No.
SiteHive Hexanode 85	Real-time noise	On site, 40 metres to the south of 25 Hickson Road, Barangaroo	000085

Equipment Details	Monitoring Type	Location	Serial No.
Sigicom Infra C22	Real-time vibration monitor	25 Hickson Road, Barangaroo	106847
Rion NL-42	Attended noise	Various	00469907
Rion NL-52	Attended noise	Various	00553919
NTI-XL2	Attended noise	Various	A2A-20373-E0
NTI-XL2	Attended noise	Various	A2A-05642-E0

5.3 Monitoring Results

5.3.1 Attended vibration monitoring summary

Attended vibration monitoring was not required during the reporting period. Vibration within 25 Hickson Road was monitored in real-time, as discussed below.

5.3.2 Attended noise monitoring summary

5.3.3 Attended noise monitoring

Attended noise monitoring results are summarised in Table 5 below:

Table 5 Attended noise monitoring results

Location / Receiver	Date	Main Activities	Noise Period	Noise Management Level (NML) dB(A) LAeq 15 minute	RBL	Predicted Noise Level	Measured External LAeq 15 minute	Measured External LA max (LA01 min)	Exceedance of NML LAeq 15 minute	Exceedance of RBL LAeq 15 minute	Difference to predicted Level	Comment
1-5 Towns Place, Millers Point	27/10/2021	High voltage electrical works	Evening	50	45	80	74.5	86.8	+24.5	+29.5	-5.5	Noise below predicted noise level
1-5 Towns Place, Millers Point	27/10/2021	Lifting of heavy equipment – HV works	Night	45	40	69	69.8	90.5	+24.8	+29.8	0.8	Negligible exceedance to predicted level.
56 – 56A High Street, Millers Point	27/10/2021	Bridge jacking and oxy cutting	Evening	50	45	55	50.1	72.2	+0.1	+5.1	-4.9	Noise below predicted noise level
56 – 56A High Street, Millers Point	27/10/2021	Bridge jacking and oxy cutting	Night	45	40	55	52.8	74.6	+7.8	+12.8	-2.2	Noise below predicted noise level
6 Argyle Place, Millers Point	16/11/2021	Drilling for cable tray installation	Evening	50	45	55	58.3	74.2	+8.3	+13.3	+3.3	Noise above predicted level. Work ceased.
2 High Street, Millers Point	16/02/2022	Drilling for cable tray installation	Night	45	40	50	48.3	60.6	+3.3	+8.3	-1.7	Noise below predicted level
8 High Street, Millers Point	14/02/2022	25t excavator with rock hammer demolishing concrete	Daytime	70	65	90	76	84	+6	+11	-14	The measured LA eq 15 min is higher than the cssi-7400 equivalent external LA eq 15 min noise level

Location / Receiver	Date	Main Activities	Noise Period	Noise Management Level (NML) dB(A) LAeq 15 minute	RBL	Predicted Noise Level	Measured External LAeq 15 minute	Measured External LA max (LA01 min)	Exceedance of NML LAeq 15 minute	Exceedance of RBL LAeq 15 minute	Difference to predicted Level	Comment
36 High Street, Millers Point	14/02/2022	25t excavator with rock hammer demolishing concrete	Daytime	70	65	90	72	77	+2	+25	-18	The measured LA eq 15 min is higher than the cssi-7400 equivalent external LA eq 15 min noise level
55 Kent Street, Millers Point	14/02/2022	25t excavator with rock hammer demolishing concrete	Daytime	70	65		62	69	-2			The measured LA eq 15 min is lower than the cssi-7400 equivalent external LA eq 15 min noise level
4-4A High Street, Millers Point	16/02/2022	Saw cutting road	Evening	50	45		60.3	70.5	+10.3	+15.3	-3.7	Results under OOHWA predicted level
10 – 12 Argyle Street	16/02/2022	Saw cutting	Evening	50			57.4	68.9	+7.4	+12.4	-15.6	Results under OOHWA predicted level
66 – 68 Bettington Street, Millers Point	16/02/2022	Saw Cutting	Evening				59.4	68.7	+9.4	+14.4	-10.6	Results under OOHWA predicted level
4-4A High Street, Millers Point	16/02/2022	Excavation	Night	45	40	64	55.2	66.4	+10.2	+15.2	-8.8	Results under OOHWA predicted level
66 – 68 Bettington Street, Millers Point	16/02/2022	Saw Cutting	Night	45	40	54	53.6	64.6	+8.6	+13.6	-0.4	Results under OOHWA predicted level
10 – 12 Argyle Street	16/02/2022	Saw cutting	Night	45	40	57	53.6	65.0	+8.6	+13.6	-3.4	Results under OOHWA predicted level
01 23 August 2	022							2			BESIX	(Watpac

Location / Receiver	Date	Main Activities	Noise Period	Noise Management Level (NML) dB(A) LAeq 15 minute	RBL	Predicted Noise Level	Measured External LAeq 15 minute	Measured External LA max (LA01 min)	Exceedance of NML LAeq 15 minute	Exceedance of RBL LAeq 15 minute	Difference to predicted Level	Comment
20A High Street, Millers Point	28/03/2022	Vacuum truck and excavation	Night	45	40	68.0	61.2	70.8	+16.2	+21.2	-6.8	Results below predicted level
21A High Street, Millers Point	28/03/2022	Excavation	Evening	50	45q	76	58.1	69.7	+8.1	+13.1	-17.9	Results below predicted level.

5.3.4 Real-time vibration monitoring summary

Vibration monitoring data for the Barangaroo Metro station has been based on real-time monitoring results as these are considered to best represent the most impacted structure, being 25 Hickson Road, and group of receivers, being the personnel working within 25 Hickson road as this is the closest heritage structure, at risk of cosmetic damage per CoA e29, in the vicinity of the works. Vibration data for 25 Hickson Road for the reporting period is included below in Appendix C. The vibration monitor is located on the ground floor of the building, see Figure 3 below, mounted to an external wall nearest to where civil construction activities will occur. A single exceedance of the screening criteria occurred, as shown below in Table 6 which was confirmed to be a false alarm triggered by the monitor being bumped.

Date Monitor Location Recorded vibration Screening Level Investigation results (mm/s) (mm/s) 8.4 7.5 23/02/2022 25 Hickson Road, The monitor was bumped when a Barangaroo piece of electrical equipment was lent against it.

No exceedances were identified caused by BR COP works.

Table 6	Recorded	exceedances	vibration	monitor
Tuble 0	necoraca	CACCCUUTICCO	VINIGUOII	monitor

Figure 3 – On site real-time vibration monitor at 25 Hickson Road

5.3.5 Real-time noise monitoring summary

CoA E37 requires that receivers be identified who are likely to experience internal noise levels greater than Leq 15 minute 60 dB(A) inclusive of a 5 dB penalty, if rock breaking or any other annoying activity likely to results in regenerated (ground-borne) noise or a perceptible level of vibration is planned, between 7am – 8pm at Barangaroo. These receivers are listed in the CNVIS for above ground Civil Works in Appendix D.2 of the CNVIS

CoA E38 requires that between the hours of 7am and 8pm, the following internal noise criteria apply:

- Criteria 1a Noise levels be less than Leq 15 minute 60 dB(A) for at least 6.5 hours
- Criteria 1b Noise levels be less than Leq 15 minute 55 dB(A) for 3.25 hours
- Criteria 2 Noise level can be above Leq 15 minute 60 dB(A) for 6.5 hours

The condition also requires that consultation be undertaken with the receivers identified in CoA E37 with the objective of determining appropriate hours of respite so that construction noise (including ground-borne noise, does not exceed the internal noise levels described above.

Consultation in relation to CoA E38 has been undertaken and documented in the CNVMP and Civil CNVIS in Appendix D. Consultation with receivers is documented in Section 4.1.2. BESIX Watpac have carried out consultation with the following community organisations, to agree respite periods:

- The Millers Point Residents Action Group
- The Walsh Bay Precinct association
- KU Lance Children's Centre, Miller's Point
- The Langham Hotel, Miller's Point

It has been agreed with the above groups that the same respite periods as were adopted by the preceding TSE Contractor, who carried out the excavation of the station box, be adopted by the BR Contractor. These respite periods are between **09.30am to 10.30am and 12.30pm to 1.30pm** Monday to Friday.

To monitor compliance with CoA E38 and the requirement that between 7am and 8pm Noise levels be less than Leq 15 minute 55 dB(A) for 3.25 hours (Criteria 1b) the following should be considered:

- The hours worked on site are between 7am and 6pm Monday to Friday so each day there are at least 2 hours (6pm to 8pm) where no construction activities take place and the noise levels generated by default are less than Leq 15 minute 55 dB(A).
- The hours worked on Saturdays are 08.00am to 1.00pm, so each Saturday there are at least 8 hours where no construction activities take place and the noise levels generated by default are less than Leq 15 minute 55 dB(A).
- No works tale place on Sundays, or public holidays.
- The BR Contractor implements a noise respite period each day (Mon Fri) between 09.30am to 10.30am and 12.30pm to 1.30pm meaning that for 2 hours during the day noise levels generated on site are less than Leq 15 minute 55 dB(A).

In total, the noise levels generated by construction activities between 7am and 8pm occurring on site will be less than Leq 15 minute 55 dB(A) for at least 4 hours between Monday to Friday, 8 hours on Saturdays and 13 hours on Sundays and Public Holidays due to the construction hours worked and respite periods implemented.

To verify this and to monitor compliance with Criteria 1a (that noise levels be less than Leq 15 minute 60 dB(A) for at least 6.5 hours) and Criteria 1b (that noise levels be less than Leq 15 minute 55 dB(A) for 3.25 hours), the number of 15 minute periods between 7am and 8pm that internal noise levels were observed to be above 60dBa (Leq 15minute) and below 55dBA, respectively have been counted. Within these periods

works are allowed to generate noise levels above 60dBA for 6.5 hours (26 x 15-minute periods) and must be below 55dBA for at least 3.25 hours (13 x 15 minute periods).

Real-time monitoring results for September 2021 to March 2022 are included in Appendix A. The real-time noise monitor is located externally so a conservative 20dB(A) noise reduction has been applied to compare the measured noise levels at the real-time monitor with internal E38 noise levels. This reduction contemplates a 10dB reduction for façade loss, given the nearest receivers are Heritages houses, a 5dB reduction for the screening provided by the Hickson Road Wall and a 5dB reduction for the >45 metre distance from the monitor to the nearest receiver. The results of the daily real-time noise monitoring carried out for the reporting period show that Criteria 1a and Criteria 1b requirements were not observed to have been exceeded during the reporting period demonstrating compliance with CoA E38.

6. Conclusion

Observed noise and vibration levels are generally in accordance with, or below, the forecasts presented in the Construction Noise and Vibrations Impact Statements (CNVIS), or noise impact assessments prepared for Out of Hours Works applications (OOHWA).

Based on the monitoring results and site investigations, noise and vibration associated with the construction activities being undertaken at the BR COP was compliant with the project approvals and requirements during the monitoring period.

Appendix A Real-time noise monitoring results

JANUARY 20	22 - Daily Monitoring Results				
		Total 15 minute			
Date	Classification	intervals (07.00 to 20.00)	Total Hours (07.00 to 20.00	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours	Comments
1/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
1/01/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
2/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
2/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB4" criteria	Compliant
2/01/2022	D L SS IDA	50			
3/01/2022	Below 220BA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
3/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
4/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
4/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
5/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
5/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
6/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
0/01/2022					o in i
6/01/2022	Above 600BA	0	0	Compliant - fits the "less than 6.5 hours above 600BA" criteria	Compliant
7/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
7/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
8/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
8/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
9/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
0/01/2022		0	0	Compliant fits the "loss than 6.5 hours above 60dPA" eritoria	Compliant
9/01/2022	ADOVE ODDDA	0	0		
10/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
10/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
11/01/2022	Below 55dBA	49	12 25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
11/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
12/01/2022	Below 55dBA	45	11 25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
12/01/2022	Above 60dBA	3	0.75	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
13/01/2022	Below 55dBA	33	8.25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
13/01/2022	DEIOW JJUDA		023		Compliant
13/01/2022	Above 60dBA	8	2	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
14/01/2022	Below 55dBA	37	9 25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
14/01/2022	Above 60dBA	7	1.75	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
15/01/2022	Below 55dBA	45	11 25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
15/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
16/01/2022	Below 55dBA	37	9 25	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
16/01/2022		12	3	Compliant - fits the "less than 6.5 hours above 60dB4" criteria	Compliant
17/04/0000	D L SS IDA	12			
17/01/2022	Below 220BA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
17/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
18/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
18/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
19/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
19/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
20/01/2022	Below 55dBA	18	4.5	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
20/01/2022		10	0.7	Compliant , fits the "less than 6.5 hours about 60dD A" state	Compliant
20/01/2022	ADOVE BOUBA	0	0		Compliant
21/01/2022	Below 55dBA	18	4.5	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
21/01/2022	Above 60dBA	13	3 25	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
22/01/2022	Below 55dBA	15	3.75	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
22/01/2022	Above 60dBA	15	3.75	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
23/01/2022	Below 55dBA	42	10.5	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
23/01/2022	Above 60dBA	Q	2 25	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
24/01/2022	Below 55dBA		2.20	Compliant, fits the at least 2.25 hours halow EEdDA within	Compliant
24/01/2022		14	3.5		Compliant
24/01/2022	Above 60dBA	9	2 25	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
25/01/2022	Below 55dBA	35	8.75	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
25/01/2022	Above 60dBA	11	2.75	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant

26/01/2022	Below 55dBA	48	12	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
26/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
27/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
27/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
28/01/2022	Below 55dBA	51	12.75	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
28/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
29/01/2022	Below 55dBA	48	12	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
29/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
30/01/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
30/01/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant
31/01/2022	Below 55dBA	50	12.5	Compliant - fits the at least 3 25 hours below 55dBA criteria	Compliant
31/01/2022	Above 60dBA	3	0.75	Compliant - fits the "less than 6.5 hours above 60dBA" criteria	Compliant

FEBRUARY 2	2022 - Daily Monitoring Results			
Date 1/02/2022	Classification Below 55dBA	Total 15 minute intervals (07.00 to 20.00) 16	Total Hours (07.00 to 20.00) 4	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours Compliant - fits the at least 3.25 hours below 55dB criteria
1/02/2022		01	E 25	Compliant fits the "less than 6.5 hours shous CodD" ariteria
1/02/2022	ADOVE OUGDA	21	5.25	
2/01/2022	Below 55dBA	17	4.25	Compliant - fits the at least 3.25 hours below 55dB criteria
2/01/2022	Above 60dBA	15	3.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
3/02/2022	Below 55dBA	22	5 5	Compliant - fits the at least 3.25 hours below 55dB criteria
3/02/2022	Above 60dBA	2	0 5	Compliant - fits the "less than 6.5 hours above 60dB" criteria
4/02/2022	Below 55dBA	15	3.75	Compliant - fits the at least 3.25 hours below 55dB criteria
4/02/2022	Above 60dBA	12	3	Compliant - fits the "less than 6.5 hours above 60dB" criteria
5/02/2022	Polow 55dPA	46	11.5	Compliant fits the at least 2.25 hours below EEdP aritaria
5/02/2022		40	113	
5/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
6/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
6/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
7/02/2022	Below 55dBA	24	6	Compliant - fits the at least 3.25 hours below 55dB criteria
7/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
8/02/2022	Below 55dBA	21	5.25	Compliant - fits the at least 3.25 hours below 55dB criteria
8/02/2022	Above 60dBA	1	0.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
0/02/2022	Below 55dBA	16	1	Compliant fits the at least 3.25 hours below 55dB criteria
3/02/2022		10	4	
9/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
10/02/2022	Below 55dBA	22	5 5	Compliant - fits the at least 3.25 hours below 55dB criteria
10/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
11/02/2022	Below 55dBA	33	8.25	Compliant - fits the at least 3.25 hours below 55dB criteria
11/02/2022	Above 60dBA	4	1	Compliant - fits the "less than 6.5 hours above 60dB" criteria
12/02/2022	Below 55dBA	40	10	Compliant - fits the at least 3.25 hours below 55dB criteria
12/02/2022	Above 60dBA	4	1	Compliant - fits the "less than 6.5 hours above 60dB" criteria
13/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
13/02/2022		0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
44/00/0000			7.5	
14/02/2022	BEIOM 220BA	30	/ 5	Compliant - fits the at least 3.25 hours below 55dB criteria
14/02/2022	Above 60dBA	9	2.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
15/02/2022	Below 55dBA	31	7.75	Compliant - fits the at least 3.25 hours below 55dB criteria
15/02/2022	Above 60dBA	5	1.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
16/02/2022	Below 55dBA	25	6.25	Compliant - fits the at least 3.25 hours below 55dB criteria
16/02/2022	Above 60dBA	12	3	Compliant - fits the "less than 6.5 hours above 60dB" criteria
17/02/2022	Below 55dBA	40	10	Compliant - fits the at least 3.25 hours below 55dB criteria
17/02/2022	Above 60dBA	1	0.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
18/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dB criteria
18/02/2022		02		Compliant - fits the "less than 6.5 hours above 60dD" orthoric
10/02/2022		0	0	
19/02/2022	Below 220BA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
19/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
20/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
21/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
21/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
22/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
22/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
23/02/2022		E0	10	Compliant - fits the at least 2.25 hours halow 55dP aritaria
2010212022		52		
23/02/2022	ADOVE 6UdBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

24/02/2022	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
24/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
25/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
25/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
26/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
26/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
27/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
27/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
28/02/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
28/02/2022	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

Date Total 15 minub Total 100002 Leg(15min) > 50dBA for at least 3.25 hours below 50dB ortenee 12/10/2022 8LOW 50dBA 20 0 0 Compliant - fits the "less that 6.5 hours above 60dB" criteria 12/10/2022 ABOVE 60dBA 20 0 0 Compliant - fits the "less that 6.5 hours above 60dB" criteria 13/10/2022 ABOVE 60dBA 20 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 14/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 15/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 15/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 15/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 16/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 17/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria 17/10/2022 ABOVE 60dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" criteria	OCTOBER 20	21 - Daily Monitoring Results			
121102022 RELOW SoBA 36 © Compliant - fits the itees 3.25 hours below SoBE criteria 121102022 ABOVE 60:BA 2 0.5 Compliant - fits the itees 3.25 hours below SoBE criteria 131102022 BELOW SoBA 0 0 Compliant - fits the itees 3.25 hours below SoBE criteria 141102022 ABOVE 60:BA 0 0 Compliant - fits the itees iten 5.5 hours above 60:BP criteria 141102022 ABOVE 60:BA 0 0 Compliant - fits the itees iten 5.5 hours above 60:BP criteria 141102022 ABOVE 60:BA 0 0 Compliant - fits the itees iten 5.5 hours above 60:BP criteria 151102022 DRUW 50:BA 0 0 Compliant - fits the itees iten 5.5 hours above 50:BP criteria 151102022 DRUW 50:BA 0 0 Compliant - fits the itees iten 5.5 hours above 50:BP criteria 151102022 DRUW 50:BA 0 0 Compliant - fits the itees iten 5.5 hours above 50:BP criteria 171102022 ABOVE 60:BA 0 Compliant - fits the itees iten 5.5 hours above 50:BP criteria 171102022 ABOVE 60:BA 0 Compliant - fits the itees iten 5.5 hours above 50:BP criteria	Date	Classification	Total 15 minute intervals (07.00 to 20.00)	Total Hours (07.00 to 20.00)	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours
12/10/2022 ABOVE BOBA 2 0.5 Compliant - fits the "less than 6.5 hours above 66dB" orthers 13/10/2022 BELOW 55dBA 22 1.3 Compliant - fits the "less than 6.5 hours above 66dB" orthers 14/10/2022 ABOVE 60dBA 37 9.2.5 Compliant - fits the "less than 6.5 hours above 66dB" orthers 14/10/2022 ABOVE 60dBA 37 9.2.5 Compliant - fits the "less than 6.5 hours above 60dB" orthers 14/10/2022 ABOVE 60dBA 37 9.2.5 Compliant - fits the "less than 6.5 hours above 60dB" orthers 14/10/2022 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" orthers 16/10/2022 BELOW 55dBA 27 6.7.5 Compliant - fits the "less than 6.5 hours above 60dB" orthers 17/10/2022 BELOW 55dBA 20 Compliant - fits the "less than 6.5 hours above 60dB" orthers 17/10/2022 BELOW 55dBA 42 0 Compliant - fits the "less than 6.5 hours above 60dB" orthers 17/10/2022 BELOW 55dBA 42 0 Compliant - fits the "less than 6.5 hours above 60dB" orthers 19/10/2022 ABOVE 60dBA 0 Compliant - fits the "less t	12/10/2022	BELOW 55dBA	36	9	Compliant - fits the at least 3.25 hours below 55dB criteria
13102022 BELOW 556BA 132 Compliant - fits the least 3.26 hours below 556B criteria 13102022 AGOVE 601BA 0 Compliant - fits the "less than 6.5 hours above 504B" criteria 14102022 AGOVE 601BA 1 2.75 Compliant - fits the "less than 6.5 hours above 504B" criteria 14102022 AGOVE 601BA 1 2.75 Compliant - fits the all east 3.26 hours below 554B criteria 15102022 AGOVE 601BA 0 12.5 Compliant - fits the all east 3.26 hours below 554B criteria 15102022 AGOVE 601BA 0 0 Compliant - fits the "less than 6.5 hours above 604B" criteria 16102022 AGOVE 601BA 0 0 Compliant - fits the "less than 6.5 hours above 604B" criteria 17102022 AGOVE 601BA 0 0 Compliant - fits the all east 3.26 hours below 564B criteria 17102022 AGOVE 601BA 0 0 Compliant - fits the all east 3.26 hours below 564B criteria 17102022 AGOVE 601BA 0 0 Compliant - fits the all east 3.26 hours below 564B criteria 17102022 AGOVE 601BA 0 0 Compliant - fits the all east 3.26 hours below 564B	12/10/2022	ABOVE 60dBA	2	0.5	Compliant - fits the "less than 6.5 hours above 60dB" criteria
13/10/2022 ABOVE E0dBA 0 0 compliant - fits the "less than 6.5 hours above 60dB" criteria 14/10/2022 ABOVE E0dBA 37 9.25 Compliant - fits the "at least 3.25 hours balve 55dB criteria 14/10/2022 ABOVE E0dBA 11 2.75 Compliant - fits the "at least 3.25 hours balve 65dB criteria 15/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "at least 3.25 hours balve 65dB" criteria 16/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "at least 3.25 hours balve 65dB" criteria 17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "at least 3.25 hours above 65dB" criteria 17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "attes the 5 hours above 65dB" criteria 18/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "attes the 5 hours above 65dB" criteria 18/10/2022 ABOVE 60dBA 0 0 Compliant - fits the attesst 3.25 hours balve 65dB" criteria 18/10/2022 ABOVE 60dBA 2 0 Compliant - fits the attesst 3.25 hours balve 65dB" criteria 18/10/2022 ABOVE 60dBA 2 0	13/10/2022	BELOW 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
14/10/2022 ELCWY 55/BA 97 9.25 Complant - fits the "less than 6.5 hours below 55/B criteria 14/10/2022 ABOVE 60/BA 11 2.75 Complant - fits the "less than 6.5 hours below 55/B criteria 15/10/2022 ABOVE 60/BA 0 Complant - fits the "less than 6.5 hours below 55/B criteria 15/10/2022 ABOVE 60/BA 0 Complant - fits the "less than 6.5 hours below 55/B criteria 16/10/2022 ABOVE 60/BA 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 17/10/2022 ABOVE 60/BA 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 17/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 17/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 18/10/2022 ABOVE 60/BA 2 0.5 Complant - fits the at less 13.25 hours below 55/B criteria 19/10/2022 ABOVE 60/BA 2 0.5 Complant - fits the at less 13.25 hours below 55/B criteria 19/10/2022 ABOVE 60/BA 2 0.5 Complant - fits the at less 13.25 hours below 55/B criteria	13/10/2022	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
14/10/2022 ABOVE 60/BA 11 2.75 Complant - fits the "less than 6.5 hours above 60/B" criteria 15/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the at least 3.25 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the at least 3.25 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0 Complant - fits the "less than 6.5 hours above 60/B" criteria 16/10/2022 ABOVE 60/BA 0 0	14/10/2022	BELOW 55dBA	37	9.25	Compliant - fits the at least 3.25 hours below 55dB criteria
15/10/2022 ELCW 556BA 50 112.5 Compliant - fits the all east 3.25 hours below 556B ortheria 15/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 16/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 18/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 19/10/202 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 19/10/202 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 20/10/202 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/202 ABOVE 60dBA 0 0	14/10/2022	ABOVE 60dBA	11	2.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
15/10/2022 ABCVE 604BA 0 0 Compliant - fits the "less than 6.5 hours above 604B" onterin 16/10/2022 16/10/2022 ABCVE 604BA 27 6.76 Compliant - fits the "less than 6.5 hours above 604B" onterin 17/10/2022 22 BELOW 55dBA 0 0 Compliant - fits the "less than 6.5 hours above 604B" onterin 17/10/2022 22 ABCVE 604BA 0 0 Compliant - fits the al least 3.25 hours above 604B" onterin 18/10/2022 18/10/2022 ABCVE 604BA 0 0 Compliant - fits the al least 3.25 hours above 604B" onterin 18/10/2022 28 ELOW 55dBA 0 0 Compliant - fits the al least 3.25 hours above 604B" onterin 18/10/2022 28 ABOVE 604BA 0 0 Compliant - fits the al least 3.25 hours above 604B" onterin 19/10/2022 28 FOVE 604BA 2 0.5 Compliant - fits the al least 3.25 hours above 604B" onterin 19/10/2021 29 FOVE 604BA 2 0.5 Compliant - fits the al least 3.25 hours above 604B" onterin 20/10/2021 21 MOVE 604BA 0 0 Compliant - fits the al least 3.25 hours above 604B" onterin 21/10/2021 21 MOVE 604BA	15/10/2022	BELOW 55dBA	50	12.5	Compliant - fits the at least 3.25 hours below 55dB criteria
16/10/2022 ELOW 55dBA 27 6.75 Compliant - fits the at least 3.25 hours below 55dB criteria 16/10/2022 REUW 55dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 17/10/2022 REUW 55dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 17/10/2022 REUW 55dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 18/10/2022 REUW 55dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 18/10/2022 REUW 55dBA 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 19/10/2022 REUW 55dBA 2 0.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 19/10/2021 REUW 55dBA 2 0.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 20/10/2021 REUW 55dBA 4 12 Compliant - fits the at least 3.25 hours above 60dB" criteria 20/10/2021 REUW 55dBA 4 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 REUW 55dBA 4 1 Compliant - fits the at least 3.25 hours below 55dB criteria	15/10/2022	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
16/10/2022 ABOVE 600BA 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 17/10/2022 ELOW 556BA 50 12.5 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 17/10/2022 BLOW 556BA 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 18/10/2022 BLOW 556BA 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 18/10/2022 BLOW 556BA 0 Compliant - fits the at least 3.25 hours below 55dB oriteria 19/10/2022 BLOW 556BA 0 Compliant - fits the at least 3.25 hours above 60dB" oriteria 19/10/2022 BLOW 556BA 0 Compliant - fits the at least 3.25 hours above 60dB" oriteria 20/10/2021 BELOW 556BA 0 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 556BA 0 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 556BA 44 11 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 556BA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 556BA	16/10/2022	BELOW 55dBA	27	6.75	Compliant - fits the at least 3.25 hours below 55dB criteria
17/10/2022 ELGW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 17/10/2022 REUW 50dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 18/10/2022 ELGW 55dBA 42 10.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 18/10/2022 ELGW 55dBA 42 10.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 19/10/2022 ELGW 55dBA 2 Compliant - fits the "less than 6.5 hours above 60dB" criteria 19/10/2022 ELGW 55dBA 2 0.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 ELGW 55dBA 48 12 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 12.76 Compliant -	16/10/2022	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
17/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 18/10/2022 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" oriteria 18/10/2022 BELOW 55dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 19/10/2022 BELOW 55dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 19/10/2022 BELOW 55dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 20/10/2021 BELOW 55dBA 4 0 0 Compliant - fits the "less than 6.5 hours above 60dB" oriteria 21/10/2021 BELOW 55dBA 4 1 Compliant - fits the at least 3.25 hours below 55dB oriteria 21/10/2021 BELOW 55dBA 4 10 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 55dBA 4 0 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 55dBA 1 2.7 Compliant - fits the at least 3.25 hours above 60dB" oriteria 21/10/2021 BELOW 55dBA 1	17/10/2022	BELOW 55dBA	50	12.5	Compliant - fits the at least 3.25 hours below 55dB criteria
18/10/2022 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 18/10/2022 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 19/10/2022 BELOW 55dBA 30 7.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 20 0.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 48 21 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 44 11 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2	17/10/2022	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
18/10/2022 ABOVE 60dBA 0	18/10/2022	BELOW 55dBA	42	10.5	Compliant - fits the at least 3.25 hours below 55dB criteria
19/10/2022 BELOW 55dBA 30 7.5 Compliant - fits the at least 3.25 hours below 55dB criteria 19/10/2021 ABOVE 60dBA 2 0.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 48 12 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 44 10 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the "ses than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 51 12.76 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours above 60dB" criteria 24/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours above 60dB" criteria </td <td>18/10/2022</td> <td>ABOVE 60dBA</td> <td>0</td> <td>0</td> <td>Compliant - fits the "less than 6.5 hours above 60dB" criteria</td>	18/10/2022	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
19/10/2022 ABOVE 60dBA 2 0.5 Compliant - fits the "less than 6.5 hours above 60dB" criteria 20/10/2021 BELOW 55dBA 48 12 Compliant - fits the at least 3.25 hours above 60dB" criteria 20/10/2021 ABOVE 60dBA 0 O Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 44 11 Compliant - fits the "less than 6.5 hours above 60dB" criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 50 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 BELOW 55dBA 0	19/10/2022	BELOW 55dBA	30	7.5	Compliant - fits the at least 3.25 hours below 55dB criteria
2010/2021 BELOW 55dBA 48 12 Compliant - fits the at least 3.25 hours below 55dB criteria 2010/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 2110/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 2110/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 2110/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours above 60dB" criteria 2110/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 2210/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 2310/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 24/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 24/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours above 60dB" criteria 24/10/2021 BELOW 55dBA 0 0 Compliant - fits the at leas	19/10/2022	ABOVE 60dBA	2	0.5	Compliant - fits the "less than 6.5 hours above 60dB" criteria
2010/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 211/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 211/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 221/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 221/10/2021 BELOW 55dBA 1 0.25 Compliant - fits the "less than 6.5 hours above 60dB" criteria 231/10/2021 BELOW 55dBA 51 1.2.75 Compliant - fits the at least 3.25 hours below 55dB criteria 241/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours below 55dB criteria 241/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 241/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 44 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021	20/10/2021	BELOW 55dBA	48	12	Compliant - fits the at least 3.25 hours below 55dB criteria
21/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 21/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 22/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 22/10/2021 ABOVE 60dBA 1 0.25 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 BELOW 55dBA 52 13 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 BELOW 55dBA 52 13 Compliant - fits the "less than 6.5 hours above 60dB" criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 BELOW 55dBA 44 10 Compliant - fits the at least 3.25 hours below 55dB criteria	20/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
21/10/2021 ABOVE 60dBA 0	21/10/2021	BELOW 55dBA	44	11	Compliant - fits the at least 3.25 hours below 55dB criteria
22/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 22/10/2021 ABOVE 60dBA 1 0.25 Compliant - fits the "less than 6.5 hours above 60dB" criteria 23/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 BELOW 55dBA 41 10.	21/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
22/10/2021 ABOVE 60dBA 1 0.25 Compliant - fits the "less than 6.5 hours above 60dB" criteria 23/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 24/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 Compliant - fits the at least 3.25 hours below 55dB criteria	22/10/2021	BELOW 55dBA	42	10.5	Compliant - fits the at least 3.25 hours below 55dB criteria
23/10/2021 BELOW 55dBA 51 12.75 Compliant - fits the at least 3.25 hours below 55dB criteria 23/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours below 55dB criteria 24/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 40 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 BELOW 55dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	22/10/2021	ABOVE 60dBA	1	0.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
23/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 24/10/2021 ABOVE 60dBA 0 0 24/10/2021 ABOVE 60dBA 0 0 25/10/2021 ABOVE 60dBA 0 0 26/10/2021 ABOVE 60dBA 0 0 26/10/2021 BELOW 55dBA 44 11 26/10/2021 BELOW 55dBA 40 0 0 26/10/2021 BELOW 55dBA 40 0 0 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours above 60dB" criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 28/10/2021 ABOVE 60dBA 0 0 Com	23/10/2021	BELOW 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
24/10/2021 BELOW 55dBA 52 13 Compliant - fits the at least 3.25 hours below 55dB criteria 24/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 29/	23/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
24/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria <td>24/10/2021</td> <td>BELOW 55dBA</td> <td>52</td> <td>13</td> <td>Compliant - fits the at least 3.25 hours below 55dB criteria</td>	24/10/2021	BELOW 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
25/10/2021 BELOW 55dBA 44 11 Compliant - fits the at least 3.25 hours below 55dB criteria 25/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	24/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
25/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria	25/10/2021	BELOW 55dBA	44	11	Compliant - fits the at least 3.25 hours below 55dB criteria
26/10/2021 BELOW 55dBA 40 10 Compliant - fits the at least 3.25 hours below 55dB criteria 26/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 BELOW 55dBA 0 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	25/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
26/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 0 0 0 Compliant - fits the at least 3.25 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria <td>26/10/2021</td> <td>BELOW 55dBA</td> <td>40</td> <td>10</td> <td>Compliant - fits the at least 3.25 hours below 55dB criteria</td>	26/10/2021	BELOW 55dBA	40	10	Compliant - fits the at least 3.25 hours below 55dB criteria
27/10/2021 BELOW 55dBA 41 10.25 Compliant - fits the at least 3.25 hours below 55dB criteria 27/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	26/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
27/10/2021 ABOVE 60dBA 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30	27/10/2021	BELOW 55dBA	41	10.25	Compliant - fits the at least 3.25 hours below 55dB criteria
28/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	27/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
28/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	28/10/2021	BELOW 55dBA	42	10.5	Compliant - fits the at least 3.25 hours below 55dB criteria
29/10/2021 BELOW 55dBA 42 10.5 Compliant - fits the at least 3.25 hours below 55dB criteria 29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the at least 3.25 hours below 55dB criteria	28/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
29/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria 30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria	29/10/2021	BELOW 55dBA	42	10.5	Compliant - fits the at least 3.25 hours below 55dB criteria
30/10/2021 BELOW 55dBA 50 12.5 Compliant - fits the at least 3.25 hours below 55dB criteria 30/10/2021 ABOVE 60dBA 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria	29/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
30/10/2021 ABOVE 60dBA 0 0 0 Compliant - fits the "less than 6.5 hours above 60dB" criteria	30/10/2021	BELOW 55dBA	50	12.5	Compliant - fits the at least 3.25 hours below 55dB criteria
	30/10/2021	ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

31/10/2021 BELOW 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
31/10/2021 ABOVE 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

NOVEMBER	2021 - Daily Monitoring Results	T		
Date	Classification	Total 15 minute intervals (07.00 to 20.00)	Total Hours (07.00 to 20.00)	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours
1/11/2021	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
1/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
2/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
2/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
3/11/2021	Below 55dBA	45	11.25	Compliant - fits the at least 3.25 hours below 55dB criteria
3/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
4/11/2021	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
4/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
5/11/2021	Below 55dBA	40	10	Compliant - fits the at least 3.25 hours below 55dB criteria
5/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
6/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
6/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
7/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
7/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
8/11/2021	Below 55dBA	37	9.25	Compliant - fits the at least 3.25 hours below 55dB criteria
8/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
9/11/2021	Below 55dBA	37	9.25	Compliant - fits the at least 3.25 hours below 55dB criteria
9/11/2021	Above 60dBA	5	1.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
10/11/2021	Below 55dBA	36	9	Compliant - fits the at least 3.25 hours below 55dB criteria
10/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
11/11/2021	Below 55dBA	36	9	Compliant - fits the at least 3.25 hours below 55dB criteria
11/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
12/11/2021	Below 55dBA	41	10.25	Compliant - fits the at least 3.25 hours below 55dB criteria
12/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
13/11/2021	Below 55dBA	50	12.5	Compliant - fits the at least 3.25 hours below 55dB criteria
13/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
14/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
14/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
15/11/2021	Below 55dBA	19	4.75	Compliant - fits the at least 3.25 hours below 55dB criteria
15/11/2021	Above 60dBA	1	0.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
16/11/2021	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
16/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
17/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
17/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
18/11/2021	Below 55dBA	49	12.25	Compliant - fits the at least 3.25 hours below 55dB criteria
18/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
19/11/2021	Below 55dBA	17	4.25	Compliant - fits the at least 3.25 hours below 55dB criteria
19/11/2021	Above 60dBA	4	1	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria

20/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
21/11/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
21/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
22/11/2021	Below 55dBA	18	4.5	Compliant - fits the at least 3.25 hours below 55dB criteria
22/11/2021	Above 60dBA	4	1	Compliant - fits the "less than 6.5 hours above 60dB" criteria
23/11/2021	Below 55dBA	46	11.5	Compliant - fits the at least 3.25 hours below 55dB criteria
23/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
		-	-	
24/11/2021	Below 55dBA	45	11 25	Compliant - fits the at least 3 25 hours below 55dB criteria
2 1/ 1 1/2021	Bolow bodb	10	11.20	
24/11/2021	Above 60dBA	2	0.5	Compliant - fits the "less than 6.5 hours above 60dB" criteria
24/11/2021		2	0.0	Compliant - nis the less than 0.0 hours above oodb onlend
25/11/2021	Below 55dBA	51	12 75	Compliant - fits the at least 3 25 hours below 55dB criteria
20/11/2021	DEIOW JOADA	51	12.75	Compliant - hts the at least 5.25 hours below 550D chteria
25/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/11/2021		0	0	Compliant - nts the less than 0.5 hours above oodb chiena
26/11/2021	Bolow 55dBA	52	13	Compliant fits the at least 3.25 hours below 55dB criteria
20/11/2021	DEIOW JOADA	52	10	Compliant - hts the at least 5.25 hours below 550D chteria
26/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/11/2021		0	0	Compliant - nts the less than 0.5 hours above oodb chiena
27/11/2021	Bolow 55dBA	13	10.75	Compliant fits the at least 3.25 hours below 55dB criteria
21/11/2021	Below 33dBA	43	10.75	Compliant - his the at least 5.25 hours below 550D chiena
27/11/2021		0	0	Compliant fits the "loss than 6.5 hours above 60dP" criteria
27/11/2021		0	0	Compliant - his the less than 0.5 hours above ooub chiena
00/44/0004		50	40	Ormaniant, fits the estimated O.C. house holes: CC-ID esiteria
28/11/2021	Below 220BA	52	13	Compliant - fits the at least 3.25 hours below 550B criteria
00/44/0004		0	0	Osmaliant, fits the Wass than C.F. have a have COJDU aritania
28/11/2021	Above 600BA	0	0	Compliant - fits the fiess than 6.5 hours above 600B criteria
00/11/10001		54	10.75	
29/11/2021	Below 220BA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
29/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
30/11/2021	Below 55dBA	19	4.75	Compliant - fits the at least 3.25 hours below 55dB criteria
30/11/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

DECEMBER 2	2021 - Daily Monitoring Results	r		
Date 1/12/2021	Classification Below 55dBA	Total 15 minute intervals (07.00 to 20.00) 17	Total Hours (07.00 to 20.00) 4.25	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours Compliant - fits the at least 3.25 hours below 55dB criteria
1/12/2021	Above 60dBA	11	2.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
2/12/2021	Below 55dBA	20	5	Compliant - fits the at least 3.25 hours below 55dB criteria
2/12/2021	Above 60dBA	19	4.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
3/12/2021	Below 55dBA	38	9 5	Compliant - fits the at least 3.25 hours below 55dB criteria
3/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
4/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
4/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
5/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
5/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
6/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
6/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
7/12/2021	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
7/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
8/12/2021	Below 55dBA	31	7.75	Compliant - fits the at least 3.25 hours below 55dB criteria
8/12/2021	Above 60dBA	11	2.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
9/12/2021	Below 55dBA	17	4.25	Compliant - fits the at least 3.25 hours below 55dB criteria
9/12/2021	Above 60dBA	7	1.75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
10/12/2021	Below 55dBA	34	8.5	Compliant - fits the at least 3.25 hours below 55dB criteria
10/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
11/12/2021	Below 55dBA	22	5 5	Compliant - fits the at least 3.25 hours below 55dB criteria
11/12/2021	Above 60dBA	12	3	Compliant - fits the "less than 6.5 hours above 60dB" criteria
12/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
12/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
13/12/2021	Below 55dBA	17	4.25	Compliant - fits the at least 3.25 hours below 55dB criteria
13/12/2021	Above 60dBA	17	4.25	Compliant - fits the "less than 6.5 hours above 60dB" criteria
14/12/2021	Below 55dBA	19	4 75	Compliant - fits the at least 3 25 hours below 55dB criteria
14/12/2021	Above 60dBA	14	35	Compliant - fits the "less than 6.5 hours above 60dB" criteria
15/12/2021	Below 55dBA	23	5.75	Compliant - fits the at least 3 25 hours below 55dB criteria
15/12/2021	Above 60dBA	19	4 75	Compliant - fits the "less than 6.5 hours above 60dB" criteria
16/12/2021	Below 55dBA	22	55	Compliant - fits the at least 3 25 hours below 55dB criteria
16/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
17/12/2021	Below 55dBA	21	5 25	Compliant - fits the at least 3.25 hours below 55dB criteria
17/12/2021	Above 60dBA	16	0.20	Compliant - fits the "less than 6.5 hours above 60dB" criteria
18/12/2021	Below 55dBA	50	10 5	Compliant - fits the at least 3.25 hours below 55dB criteria
18/12/2021		50	12 0	Compliant - fits the "less than 6.5 hours above 60dP" oritoria
10/12/2021		0	40 5	Compliant - no the reso than 0.5 hours above 5000 Cillena
10/12/2021		50	12.5	Compliant - his the at least 3.20 Hours below 30dB Criteria
19/12/2021		0	0	Compliant - his the ress than 0.5 hours above budb "chiefta
20/12/2021		51	12.75	Compliant - his the at least 3.25 hours below 55dB criteria
20/12/2021	ADOVE 6UGBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

21/12/2021	Below 55dBA	20	5	Compliant - fits the at least 3.25 hours below 55dB criteria
21/12/2021	Above 60dBA	24	6	Compliant - fits the "less than 6.5 hours above 60dB" criteria
	-			
22/12/2021	Below 55dBA	19	4.75	Compliant - fits the at least 3.25 hours below 55dB criteria
00/40/0004		00	F 7F	Or work is the the many them of the sum all successions and the side
22/12/2021	Above 60dBA	23	5.75	Compliant - fits the "less than 6.5 hours above 600B" criteria
23/12/2021	Rolow 55dRA	43	10.75	Compliant fits the at least 3.25 hours below 55dB criteria
23/12/2021	Below 35dBA	43	10.75	Compliant - his the at least 3.23 hours below 350b chiena
23/12/2021	Above 60dBA	8	2	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/12/2021	, wore couple			
24/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
24/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
25/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
25/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
00/40/0004		50	40	Openedicust, fits the estimated OF because halow FE-ID esiteria
26/12/2021	BEIOW 220BA	52	13	Compliant - fits the at least 3.25 hours below 550B criteria
26/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
20/12/2021		0	0	Compliant - his the less than 0.5 hours above oodb chiena
27/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
27/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
28/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
28/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
29/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
20/12/2021	Above 60dBA	0	0	Compliant fits the "loss than 6.5 hours above 60dB" criteria
29/12/2021	Above oodba	0	0	Compliant - his the less than 0.5 hours above oodb chiena
30/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3 25 hours below 55dB criteria
50, 12,2021		52	10	compliant into allo delodo o 20 nodro bolon ocab ontona
30/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
31/12/2021	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
31/12/2021	Above 60dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria

MARCH 2021	 Daily Monitoring Results 			
Date	Classification	Total 15 minute intervals (07.00 to 20.00)	Total Hours (07.00 to 20.00)	LAeq(15min) < 55dBA for at least 3.25 hours. LAeq(15min) > 60dBA not more than 6.5 hours
1/03/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
1/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
0/00/0000		50	10	Ormaliant fits the attacet 2.05 hours holes. 55 dD with size
2/03/2022	Below SSOBA	52	13	Compliant - ins the at least 3.25 hours below 550B chteria
2/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
3/03/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
3/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
4/03/2022	Bolow 55dBA	52	13	Compliant fits the at least 3 25 hours holew 55dB criteria
4/03/2022	Delow 33dBA	52	13	Compliant - his the at least 3.23 hours below 350b chiena
4/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
5/03/2022	Below 55dBA	52	13	Compliant - fits the at least 3.25 hours below 55dB criteria
5/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
6/03/2022	Bolow 55dBA	52	13	Compliant fits the at least 3 25 hours below 55dB criteria
0/03/2022	Delow 33dBA	52	13	Compliant - his the at least 3.23 hours below 350b chiena
6/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
7/03/2022	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
7/00/0000				
7/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
8/03/2022	Below 55dBA	49	12 25	Compliant - fits the at least 3 25 hours below 55dB criteria
0/00/2022		10	12.20	
8/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
9/03/2022	Below 55dBA	39	9.75	Compliant - fits the at least 3.25 hours below 55dB criteria
0/02/2022	Abova 60 dBA	0	0	Compliant fits the "loss than 6.5 hours above 60dP" criteria
9/03/2022		0	0	
10/03/2022	Below 55dBA	31	7.75	Compliant - fits the at least 3.25 hours below 55dB criteria
10/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
			40.75	
11/03/2022	Below 55dBA	51	12.75	Compliant - fits the at least 3.25 hours below 55dB criteria
11/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
11/00/2022		0	0	
12/03/2022	Below 55dBA	46	11.5	Compliant - fits the at least 3.25 hours below 55dB criteria
12/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
12/02/2022	Polow 55dPA	52	12	Compliant fits the at least 2.25 hours helpy EEdP criteria
13/03/2022	Below 550BA	52	13	Compliant - his the at least 3.25 hours below 550B cilteria
13/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
14/03/2022	Below 55dBA	41	10.25	Compliant - fits the at least 3.25 hours below 55dB criteria
44/00/0000				
14/03/2022	ADOVE 6U GBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
15/03/2022	Below 55dBA	24	85	Compliant - fits the at least 3 25 hours below 55dB criteria
10/00/2022			0.0	compliante no trio arioast 0.20 nours below 000b onteria
15/03/2022	Above 60 dBA	0	0	Compliant - fits the "less than 6.5 hours above 60dB" criteria
Appendix B Calibration Certificates

CALIBRATION

CERTIFICATE NO: SLM31165

EQUIPMENT TESTED: Sound Level Meter

Manufacturer:	RION		
Type No:	NL-52	Serial No:	00553919
Mic. Type:	UC-59	Serial No:	08077
Pre-Amp. Type:	NH-25	Serial No:	43963

Owner: Ward Civil & Environmental Engineering Suite 2, Level 4, 65 Epping Rd North Ryde, NSW 2113

Tests Performed: IEC 61672-3:2013

Comments: All Tests passed for Class 1. (See overleaf for details) **CONDITIONS OF TEST:**

Ambient Pressure 1002 Temperature **Relative Humidity**

hPa ±1 hPa 24 °C ±1° C 32 % ±5%

Date of Receipt: 15/11/2021 16/11/2021 Date of Calibration : Date of Issue : 16/11/2021

Acu-Vib Test Procedure: AVP10 (SLM) based on IEC 61672-3.

CHECKED BY:

AUTHORISED SIGNATURE:

Acu-Vib^{*}Electronics

CALIBRATIONS SALES RENTALS REPAIRS

Accredited for compliance with ISO/IEC 17025 - Calibration

Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

This report applies only to the item identified in the report and may not be reproduced in part. The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

ACCREDITATION

Accredited Lab No. 9262 Acoustic and Vibration Measurements

Head Office & Calibration Laboratory Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 (02) 9580 8133 cu-vib.com.au

Page 1 of 2 Calibration Certificate AVCERT10.12 Rev.2.0 14/04/202 14/04/2021

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self-Generated Noise	11.1	Observed
Electrical Noise	11.2	Observed
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Not Applicable
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:-2013, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:-2013 because evidence was not publically available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:-2013 and because the periodic tests of IEC 61672-3:-2013 cover only a limited subset of the specifications in IEC 61672-1:-2013.

A full technical report is available on request.

Page 2 of 2 End of Calibration Certificate AVCERT10.12 Rev.2.0 14/04/2021

NATacoustic

oustic Calibration & Testing Laboratory

Level 1, 418A Elizabeth Street., Surry Hills NSW 2010 AUSTRALIA Ph: (02) 8218 0570 email: service@natacoustic com au website: \ A division of Renzo Tonin & Associates (NSW) Pty Ltd ABN 29 117 462 861 www.natacoustic com au

Certificate of Calibration Sound Level Meter

Calibration Date 9/12/2021 Job No RB931 Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Operator AM Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010

Test Item

Instrument Make NTI	Model XL2	Serial No #A2A-05642-E0 #RTA06-014
Microphone Make GRAS	Model 40AE	Serial No #165478
Preamplifier Make NTI	Model MA220	Serial No #2357
Ext'n Cable Make NTI	Model N/A	Serial No N/A
Accessories Nil		Firmware 4 20

SLM Type Filters Class 1

Environmental	Measured		
Conditions	Start	End	
Air Temp. (°C)	23.6	24.7	
Rel. Humidity (%)	63.2	54.3	
Air Pressure (kPa)	100.3	100 2	

Applicable Standards Periodic tests were performed in accordance with procedures from EC 61672-3 :2013 and IEC 61260-3 :2016

Applicable Work Instruction

RWi-08 SLM & Calibrator Verification

Laboratory Equipment B&K4226 Multifunction Acoustic Calibrator SN 2288472 Agilent Function Generator Model 33220A SN MY43004013 Agilent Digital Multimeter Model 34401A SN MY41004386

Traceability

The results of the tests and measurements included in this document are traceable via the test methods described under each test, and by the use of the above equipment, which has been calibrated by NATA accredited calibration facilities. This document shall not be reproduced, except in full.

Scope scope This certificate is issued on the basis that the instrument complies with the manufacturer's specification. See "Sound Level Meter Verification - Summary of Tests" page for an itemised list of results for each test.

Uncertainty The uncertainty is stated at a confidence level of 95% using a k factor of 2.

Calibration Statement

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3 2013 and EC 61260-3:2016, for the environment conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 and EC 61260-1:2014 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 and EC 61260-1:2014 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of EC 61672-3 2013 and EC 61260-3:2016 cover only a limited subset of the specifications in IEC 61672-1:2013 and EC 61260-1 2014.

Authorized Signatory: NATA NATA Accredited Laboratory Number 14966 Accredited for compliance with ISO/IEC 17025 - Calibration WORLD RECOGNISED ACCREDITATION Print Name: Date: 10/12/2021

Template Document Name RQT-05 SLM IEC61672 Verification (r75)

NA Sound Level Meter Ve	ATaco erifica	ustic tion - Summ	ary of ⊺	Fests			
Calibration Date 9/12/2021 Job No Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD	RB931		Operator	AM			
Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010							
1. Instrument Information & Reference Conditions Instrument Make NTI Model XL2 Serial No #A2A-05642-E0 #RTA06-014 Microphone Make GRAS Model 40AE Serial No #165478 Preamplifier Make NTI Model MA220 Serial No #2357 Ext'n Cable Make NTI Model N/A Serial No #XAA-05642-E0 #RTA06-014 Accessories Nil Firmware 4.20							
Freq Weightings FLAT No A Yes C Time Weightings Fast Yes Slow Yes Impulse	Yes Yes	Z Yes]				
SLM Type 1 Filter Class 1							
Instruction Manual is Available						Yes	
2. Preliminary Inspection and Power Supply				Lo	gger Inspected	Yes	
				Calibration E	quipment Okay	Yes	
				Power St Power S	upply Ok (Start)	Yes	
D. Fundamental One distance			1		Maaa	une el	
S. Environmental ConditionS			Environmer	ntal Conditions	Meas Start	End	
				Air Temp. (°C)	23.6	24.7	
			Air	Pressure (kPa)	03.2 100 3	54 3 100.2	
				Conforming	Yes	Yes	
Test Description	1				Value / Conforming	Uncert (+/-)	
4(a). Initial Calibration	1		Calibratio	n Frequency Hz	1000.0	N/A	
		Indicated L	evel Before A	djustment (dB)	113 9	0.11	
		Indicated Stability During	Level After A	djustment (dB)	114 0 Yes	0.11 N/A	
5(a). Self-Generated Noise, Microphone Installed		Clability During	goonanaoas	A	18.2	0.09	
5(b). Self-Generated Noise, Electrical				A	9.5	0.09	
				Z	18.9	0.09	
6. Acoustical Signal Test				125 Hz	Yes	0.42	
				8 kHz	Yes	0.42	
7. Electrical Frequency Weighting				A	Yes	0.09	
				z	Yes	0.09	
8. Frequency & Time Weightings 1kHz		8(a). Frequence	cy Weighting	C	Yes	0.09	
				Z FLAT	Yes N/A	0.09	
		8(b). Tin	ne Weighting	Slow	Yes	0.09	
9(a). Level Linearity 8kHz (Increasing)				Conforming	Yes	0.09	
9(b). Level Linearity 8kHz (Decreasing)				Conforming	Yes	0.13	
10(b). Level Linearity including the Level range (SdB Above Under-range)				Conforming	Yes	0.13	
11. Toneburst Response				Fast	Yes	0.13	
				SIOW SEL/Leq	Yes	0.13	
12. Peak C sound level				8 kHz	Yes	0.09	
13. Overload indication				Conforming	Yes	0.09	
14. High-level Stability				Latches	N/A Vec	N/A	
				comorning	163	0.00	
15(a). Octave Band Filter Relative Attenuation (≤2kHz)				Conforming	Yes	0.09	
				comorning	100	5.00	
16. Octave Band Filter Relative Attenuation at Midband Frequency				Conforming	Yes	0.09	
17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)				31.5Hz	Yes	0.13	
17(b). Octave Band Filter Level Linearity 1kHz (Increasing) 17(c). Octave Band Filter Level Linearity 16kHz (Increasing)				1kHz 16kHz	Yes Yes	0.13	
18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing) 18(b). Octave Band Filter Level Linearity 1kHz (Decreasing)				31.5Hz 1kHz	Yes Yes	0.13	
18(c). Octave Band Filter Level Linearity 16kHz (Decreasing) 16kHz Yes							
19(a). Octave Level Linearity Including the Level range (31.5Hz)				31.5Hz	Yes	0.13	
19(b). Octave Level Linearity Including the Level range (1kHz) 1kHz Yes							
19(c). Octave Level Linearity Including the Level range (16kHz) 16kHz Yes							
20(a). Octave Band Filter Lower Limit (Reference Range) 20(b). Octave Band Filter Lower Limit (Lowest Pance)				Conforming	Yes Yes	0.09	
				comorning	100	0.09	
21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz)				Conforming	Yes	0.09	
21(c). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)				Conforming	Yes	0.09	
21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)				Conforming	Yes	0.09	
22. Third Octave Band Filter Relative Attenuation at Midband Frequency		Conforming	Yes	0.09			

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)	31.5Hz	Yes	0.13
23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)	1kHz	Yes	0.13
23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)	16kHz	Yes	0.13
24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)	31.5Hz	Yes	0.13
24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)	1kHz	Yes	0.13
24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)	16kHz	Yes	0.13
25(a). Third Octave Level Linearity Including the Level range (31.5Hz)	31.5Hz	Yes	0.13
25(b). Third Octave Level Linearity Including the Level range (1kHz)	1kHz	Yes	0.13
25(c). Third Octave Level Linearity Including the Level range (16kHz)	16kHz	Yes	0.13
26(a). Octave Band Filter Lower Limit (Reference Range)	Conforming	Yes	0.09
26(b). Octave Band Filter Lower Limit (Lowest Range)	Conforming	Yes	0.09
SLM Overall Conforming		Yes	

Accredited for compliance with AS ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

This document shall not be reproduced, except in full. Periodic tests were performed in accordance with procedures from EC 61672-3 :2013 and IEC 61260-3 :2016.

Checked

Template Document Name: RQT-05 SLM IEC61672 Verification (r75)

1(a). Instrument Information										
Calibration Date 9/12/2021 Job					RB931	Operator	AM			
Client Name RENZO TON Client Address LEVEL 1 41	Client Name RENZO TONIN & ASSOCIATES (NSW) PTY LTD Client Address LEVEL 1 418A ELIZABETH ST SURRY HILLS 2010									
1. Instrument Information										
Instrument Make NTI		Model	XL2		Serial	#A2A-05642-E0 #RTA06-014	45			
Preampifier Make NTI		Model	40AE MA220		Serial	#165478 pr #2357	15			
Ext'n Cable Make NTI		Model			Serial					
Accessories Nil					Firmware	4.20				
	Α	Yes								
Frea Weightings	С	Yes								
		Yes								
	ILAI									
	Fast	Yes								
Time Weightings	Slow	Yes								
	impulse	163								
Finish	Leq	Yes								
Functions	SEL	Yes								
	Jun		I							
Instrument Ranges	Range	Indicato	r Range	Primary Low dB	y Range					
1	HIGH	40	140	60	134					
2	MID	20	120	40	120					
3	LOW	0	100	20	100					
5										
6										
7										
8										
10										
Check List			ОК							
Reference Range	MID	1								
Ref. SPL @ 1kHz	114									
Linearity Limits on Ref range	Low dB	High dB	1							
1kHz Leq (A weighting)	40 0	120.0				Colour Legend				
4kHz Leq	40 0	120.0				Enter Value	110			
8kHz Leq	40 0	120.0				Operator Action	110			
Highest Range for 10(b),12,13	MID]				Error/Outside Tolerance	2.0			
		-				Tolerance	+/-1			
SLM Class Filter Class	1	-				Select Toggle	Val 110			
Filter Base	2					Conforming	Yes			
Instruction Manual Tit		183 2 150 6	672-2-2012)		roting Manue					
	ie (Glause 3.	103.2, IEC 6	Version	2.5	raung Manua					
		Publ	ication Date	2/11/2012						
Source of Docume	nt (& Date o	f Download if	Applicable)	N/A						
Confo	orming			Yes]					
Pattern Evaluation Test F	Report (Clau	se 3.5, IEC 61	1672-3:2013)							
	Reference	Number or P	age Number							
Source of Docume	nt (& Date o	Publ f Download if	Applicable							
		. Somiload II	, ppiloable)		_					
Confo	orming			No						

1(b). Acoustic Corrections

	Absolute Corrections and Uncertainties									
Freq	Mic FF to	Pressure	Ci	ase	Windscreen		Other *		Total	
(Hz)	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB
31.5	0.00								0.00	0.41
63	0.00								0.00	0.41
125	0.00								0.00	0.41
250	0.00								0.00	0.41
500	0.00								0.00	0.41
1k	0.20								0.20	0.41
2k	0.45								0.45	0.41
4k	1.05								1.05	0.41
8k	2.80								2.80	0.58
12.5k	5.60								5.60	0.64
16k	7.85								7.85	0.64

Source of Mic FF to Pressure Correction	B&K Type 4226 Corrections
Source of Case Correction	Not Available
Source of Windscreen Correction	Not Available
*Description of Other Correction	N/A

Descriptions of Tests

1(b). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 12.2)

Correction data shall account for:

- the equivalent free-field or random-incidence frequency response of the sound level meter if the source of sound or simulated sound is the pressure field in a multi-frequency sound calibrator, in a comparison coupler, or from an electrostatic actuator; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 12.3)

Correction data shall be obtained from tables in the Instruction Manual for the sound level meter.

(Clause 12.4)

If the necessary correction data are not available from the Instruction Manual, data from the manufacturer of the microphone, multi-frequency sound calibrator, comparison coupler, or electrostatic actuator may then be used. This data shall be publicly available

(Clause 12.5)

The source for the free-field or random-incidence correction data shall be stated in the documentation for the results of the periodic tests. The source for the associated uncertainties of measurement shall be the same as the source for the corresponding correction data. If the uncertainties of the corresponding free-field correction data are not available, the applicable maximum-permitted uncertainties given in IEC 62585 shall be used in the calculation of the laboratory's total uncertainty budget.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

1(c). Electrical Corrections

	Absolute Corrections and Uncertainties									
Freq	Mic 0 deg	g FF Resp	Case		Windscreen		Other *		Total	
(Hz)	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB	dB	Uncert dB
31.5			0.00		0.00		0.00		0.00	0.41
63			0.00		0.00		0.00		0.00	0.41
125			0.00		0.00		0.00		0.00	0.41
250			0.00		0.00		0.00		0.00	0.41
500			0.00		0.00		0.00		0.00	0.41
1k			0.00		0.00		0.00		0.00	0.41
2k			0.00		0.00		0.00		0.00	0.41
4k			0.00		0.00		0.00		0.00	0.41
8k			0.00		0.00		0.00		0.00	0.58
12.5k			0.00		0.00		0.00		0.00	0.64
16k			0.00		0.00		0.00		0.00	0.64

Source of Mic 0 deg Free-field Response	Not Available
Source of Case Correction	Not Available
Source of Windscreen Correction	Not Available
*Description of Other Correction	N/A

Descriptions of Tests

1(c). Acoustical signal tests of a frequency weighting (IEC 61672-3)

(Clause 13.6)

For each frequency weighting and at each test frequency, corrections shall be applied to the relative frequency weightings determined in 13.5 to account for:

- the deviation of the free-field or random-incidence frequency response of the microphone in the reference direction from a uniform frequency response;

- the average effects of reflections from the case of the sound level meter and of diffraction of sound around the microphone and preamplifier; and,

- if applicable, the average influence on the frequency response of a typical microphone of a windscreen and any accessories that are part of the configuration of the sound level meter for normal use.

(Clause 13.7)

Corrections for the effects of reflections and diffraction and for the influence of the windscreen and windscreen accessories on the free-field or random-incidence frequency response shall be the same as used for the frequency-weighting tests with acoustical signals.

NOTE: Where the uncertainties due to the "Mic FF to Pressure", "Case" or "Windscreen" are omitted in the table above, the following statement applies:

No information on the uncertainty of measurement, required by IEC 61672-3:2013, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95 %.

2. Preliminary, 3. Environmental Conditions & 4. Calibration

2. Preliminary Inspection and Power Supply

Instrument Inspected	Yes
Laboratory Calibration Equipment Ok	Yes
Power Supply Ok (Start)	Yes
Power Supply Ok (End)	Yes

3. Environmental Conditions											
Environmental Measured Devn from Mid Limits Expanded Deviation										Limits	
Conditions	Start	End	Start	End	Uncert.	Start	End	Tolerance	Complies	Min	Max
Air Temp. (°C)	23.6	24.7	0.6	1.7	0.5	1.10	2.20	3	Yes	20	26
Rel. Humidity (%)	63.2	54.3	15.7	6.8	4.8	20.50	11.60	22.5	Yes	25	70
Air Pressure (kPa)	100.3	100.2	7.8	7.7	0.63	8.41	8.37	12.5	Yes	80	105

Yes

		4(a). Initial Calibration
SLM Settings		
Time Weighting	Fast	
Frequency Weighting	Z	
SLM Range	MID	
Microphone / Windshield Correction	OFF	
Polarization Voltage (V)	0	
Microphone Sensitivity (mV/Pa)	39.6	
		•
B&K 4226 Calibrator Settings		
"Sound Field"	Pressure	
"Microphone"	N/A	
Calibration Level (Lin)	114	
Calibration Frequency (Hz)	1000	
		•
Calibration		
Indicated Level before adjust. (dB)	113.9	
Adjustment required	Yes	
Indicated level after adjust. (dB)	114	
		4(b). Final Calibration

Conforming

Level at conclusion of testing (dB)	114.0
Difference	00
Tolerance	± 0.1
Conforming	Yes

Uncertainty (+/-) dB 0.11

Descriptions of Tests

2. Preliminary Inspection and Power Supply (IEC 61672-3 Clause 5 "Preliminary Inspection" & Clause 6 "Power Supply") Prior to any measurements, the sound level meter and all accessories shall be visually inspected, paying particular attention to damage to, or accumulation of foreign material on, the protection grid or diaphragm of the microphone. All relevant controls shall be operated to

ensure that they are in working order. If the controls, display, and other essential elements are not in proper working order, no periodic tests shall be performed.

For all tests, the sound level meter shall be powered from its preferred supply or a suitable alternative. Before and after conducting the set of tests with acoustical signals and before and after conducting the set of tests with electrical signals, the power supply for the sound level meter shall be checked by the method stated in the Instruction Manual to ensure that it is within the specified operating limits. If the voltage or the equivalent indication of the status of the power supply is not within the operating limits and the reason cannot be attributed to partially discharged batteries or an incorrect selection of the voltage of the public power supply, then no periodic tests shall be performed as a malfunction is indicated.

3. Environmental conditions (IEC 61672-3 Clause 7 "Environmental Conditions") Periodic tests shall be performed within the following ranges of environmental conditions: 80 kPa to 105 kPa for static air pressure, 20 °C to 26 °C for air temperature and 25 % to 70 % for relative humidity. These conditions are recorded at the start and end of the testing

4a. Calibration (IEC 61672-3 Clause 10 "Indication at the calibration check frequency") The sound level meter shall be adjusted, if necessary, to indicate the required sound level for the environmental conditions under which the tests are performed. The indications of the sound level meter before and after adjustment shall be recorded.

4b. Long-term Stability (IEC 61672-3 Clause 15) The long-term stability of a sound level meter is evaluated from the difference between the A-weighted sound levels indicated in response to steady 1 kHz signals applied at the beginning and end of a period of operation. For each indication, the level of the input signal shall be that which is required to display the reference sound pressure level on the reference level range for the first indication.

The period of continuous operation shall be between 25 min and 35 min during which any convenient set of tests that use electrical input signals are performed.

The measured difference between the initial and final indications of A-weighted sound level shall not exceed the acceptance limits given in IEC 61672-1.

Descriptions of Tests

5(a) Self-Generated Noise, Microphone Installed (IEC 61672-3 Clause 11.1)

Measurements of the level of self-generated noise shall be made in a location that is available to the testing laboratory and where the level of background noise is minimized. Any supplied windscreen and windscreen accessory need not be installed around the microphone for measurement of the level of self-generated noise. The sound level meter shall be in the configuration submitted for periodic testing and with the most-sensitive level range and frequency-weighting A selected.

The indicated level of the A-weighted self-generated noise on the most-sensitive level range shall be recorded and reported. The level of selfgenerated noise is preferably measured as a time-averaged sound level with an averaging time of at least 30 s. Time-averaged sound level may be measured directly or calculated from an indication of sound exposure level and integration time. If time-averaged sound level cannot be determined, the time-weighted sound level from the average of ten observations taken at random over a 60 s interval shall be measured. If the time-weighted sound level is recorded, the S time weighting shall be used if available; otherwise the F time weighting shall be used.

5(b) Self-Generated Noise - Electrical (IEC 61672-3 Clause 11.2)

With the microphone replaced by the electrical input-signal device (or using the specified means of inserting electrical signals), and with the device terminated in the manner specified in the Instruction Manual for measurements of the level of self-generated noise, the indicated level of the time-averaged or time-weighted self-generated noise, measured by the same procedure as with the microphone installed, shall be recorded and reported for all frequency weightings and for the most-sensitive level range.

✓ Checked

6. Acoustical Signal Test

SLM Settings	
Time Weighting	Fast
Frequency Weighting	c
SLM Range	MID
Microphone Compensation Filter	OFF
B&K 4226 Calibrator Settings	6
"Sound Field"	Pressure
"Microphone"	N/A
Reference Setting (Lin)	114

Freq	OF	bserved Valu	105	Mean Meter	4226	Corrected	Prossure to	Case Effect	Windscreen	Other Effect	Equivalent	Posponso ro	С	Deviation	Tole	ance	•		Uncertainty	
They	5	Soci ved vale	100	Reading	calibrator	Mean	Free Field	Correction	Effect	Correction	Free Field	1kH7	Weighting	from	Totel	anoc	Conforming	Total	Lab	Corrections
(Hz)	Set 1	Set 2	Set 3	ricualing	corrections	Readings	Thee Theid	Concellent	Correction	Concellon	Thee There	11412	Response	Expected	Type 1	Type 2		(+/-) dB	(+/-) dB	(+/-) dB
31.5	110 8	110.7	110.7	110.73	0.12	110.85	0.00	0 00	0.00	0.00	110.85	-3.32	-3.00	-0 32	± 1.5	±30	Yes	0.43	0.14	0.41
63	113.1	113.1	113.1	113.10	0.04	113.14	0.00	0 00	0.00	0.00	113.14	-1.03	-0.80	-0 23	± 1.0	±20	Yes	0.42	0.12	0.41
125	113 8	113.8	113.8	113.80	0.00	113.80	0.00	0 00	0.00	0.00	113.80	-0.37	-0.20	-0.17	± 1.0	±15	Yes	0.42	0.12	0.41
250	114 0	114.0	114.0	114.00	0.00	114.00	0.00	0 00	0.00	0.00	114.00	-0.17	0.00	-0.17	± 1.0	±15	Yes	0.42	0.12	0.41
500	114 0	114.0	114.0	114.00	0.00	114.00	0.00	0 00	0.00	0.00	114.00	-0.17	0.00	-0.17	± 1.0	±15	Yes	0.42	0.12	0.41
1k	114.0	114.0	114.0	114.00	-0.03	113.97	0.20	0.00	0.00	0.00	114.17	0.00	0.00	0.00	± 0.7	± 1.0	Yes	0.42	0.11	0.41
2k	113.7	113.7	113.7	113.70	0.02	113.72	0.45	0 00	0.00	0.00	114.17	0.00	-0.20	0 20	± 1.0	±20	Yes	0.43	0.13	0.41
4k	113.1	113.0	113.1	113.07	-0.18	112.89	1.05	0 00	0.00	0.00	113.94	-0.23	-0.80	0 57	± 1.0	± 3 0	Yes	0.43	0.14	0.41
8k	109 8	109.8	109.8	109.80	-0.15	109.65	2.80	0 00	0.00	0.00	112.45	-1.72	-3.00	1 28	+1 5; -2.5	±50	Yes	0.60	0.15	0.58
12.5k	103 8	103.7	103.7	103.73	0.02	103.75	5.60	0 00	0.00	0.00	109.35	-4.82	-6.20	1 38	+2 0; -5.0	+5,-inf	Yes	0.68	0.21	0.64
16k	99.7	99.7	99.7	99.70	0.18	99.88	7.85	0 00	0.00	0.00	107.73	-6.44	-8.50	2 06	+2.5; -16 0	+5,-inf	Yes	0.74	0.37	0.64

Description of Tests

6. Acoustical signal tests of a frequency weighting (IEC 61672-3 Clause 12) The sound level meter shall be set for frequency-weighting C, if available, otherwise for frequencyweighting A. The frequency weighting for tests with acoustical signals shall be determined at 125 Hz, 1 kHz, and 8 kHz. However, for information, this laboratory tests from 31.5Hz to 16kHz.

For frequency-weighting tests using a multi-frequency sound calibrator, the sound pressure level in the coupler of the sound calibrator shall preferably be set to the reference sound pressure level at 1 kHz, but shall be in the range from 70 dB to 125 dB at all frequencies.

At the discretion of the laboratory, the sound level meter shall be set to measure F-timeweighted sound level or S-time-weighted sound level. As a minimum, two repetitions of the coupling and measurements shall be performed to give a total of at least three tests.

The relative frequency weighting, relative to the response at 1 kHz, shall be determined from the average equivalent free-field or random-incidence sound level at a test frequency minus the average equivalent free-field or random-incidence sound level at 1 kHz. (Clause 12.15)

7. Electrical Frequency Weighting

7.	Electric
SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	30
Generator Frequency (Hz)	1k
SPL Reference (dB)	75
Integration Time (s)	N/A
Generator Output (mVrms)	149.60

Freq	Output	Indication	Output	Indication	Output	Indication		
Hz	(mV)	A	(mV)	C	(mV)	Z		
03	3054.44	74.9	164.03	74.9	149.60	74 9		
125	904.04	74.9	155.00	75.0	149.00	750		
250	402.05	74.9	149.00	75.0	149.00	750		
	149.60	74.5	149.60	75.0	149.60	75.0		
24	130 30	75.0	153.00	75.0	149.00	75.0		
2K /k	133.30	75.0	164.03	75.0	149.00	75.0		
- 4K 	169.80	75.0	211.32	75.0	149.60	75.0		
16k	319.84	74.8	398.04	74.8	149.60	75.0		
	0.0101	0.00		0.00		0.00		
au F		0.00		0.00		0.00		
e lelo		0.00		0.00		0.00		
лs гор		0.00		0.00		0.00		
po Mic		0.00		0.00		0.00		
g F čes		0.00		0.00		0.00		
de oic		0.00		0.00		0.00		
2 2		0.00		0.00		0.00		
		0.00		0.00		0.00		
		0.00		0.00		0.00		
		0.00		0.00		0.00		
fec		0.00		0.00		0.00		
, 문 문		0.00		0.00		0.00		
se		0.00		0.00		0.00		
ပ္ပိပိ		0.00		0.00		0.00		
		0.00		0.00		0.00	Toler	ance
		0.00		0.00		0.00		
ц.		0.00		0.00		0.00		
lec		0.00		0.00		0.00		
Ш н		0.00		0.00		0.00		
en		0.00		0.00		0.00		
cre		0.00		0.00		0.00		
Cog		0.00		0.00		0.00		
Vin V		0.00		0.00		0.00		
>		0.00		0.00		0.00		
		0.00		0.00		0.00		
5		0.00		0.00		0.00		
cti		0.00		0.00		0.00		
LIE		0.00		0.00		0.00		
ပိ		0.00		0.00		0.00		
her		0.00		0.00		0.00		
ŏ		0.00		0.00		0.00		
		0.00		0.00		0.00		
p		74.90		74.90		74.90		
Fie		74.90		75.00		75.00		
96		74.90		75.00		75.00		
Ě		74.90		75.00		75.00		
ant		75.00		75.00		75.00		
rale		75.00		75.00		75.00		
lui		75.00		75.00		75.00		
ц Ц		74.80		74.80		75.00	Type 1	Type 2
		-0.10		-0.10		-0.10	± 1.0	±20
ξĘ		-0.10		0.00		0.00	± 1.0	±15
1 1 k		-0.10		0.00		0.00	± 1.0	±15
e re on f		-0.10		0.00		0.00	± 1.0	±15
atic		0.00		0.00		0.00	± 0.7	±10
pol Šviš Ex		0.00		0.00		0.00	± 1.0	±20
De les		0.00		0.00		0.00	± 1.0	±30 +50
~		-0.20		-0.20		0.00	+2.5: -16.0	+5inf
		0.20		0.20		0.00		,
Confo	orming	Yes		Yes		Yes		
Uncortaint				0.00	1			
uncertainty	(+/-) aB			0.09	1			

Description of Tests

7. Electrical signal tests of frequency weightings (IEC 61672-3 Clause 13) Frequency weightings shall be determined using steady sinusoidal electrical input signals for all frequency weightings for which design goals and acceptance limits are specified in IEC 61672-1 and which are provided in the sound level meter. The sound level meter shall be set to display F-time-weighted sound level.

On the reference level range and for each frequency weighting to be tested, the level of a 1 kHz input signal shall be adjusted to yield an indication that is 45 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 1 kHz on the reference level range.

At test frequencies other than 1 kHz, the level of the input electrical signal shall be determined as the level of the input signal at 1 kHz minus the exact design-goal response, given in IEC 61672-1 for the selected frequency weighting at the test frequency.

		8. F	requenc	y & Tim	e Weigh	ntings 1	kHz
SLM S	Settings						
Ti	me Weighting	Fast					
Frequer	ncy Weighting	А					
	SLM Range	MID					
Generator & At	tenuator Settin	igs					
Att Concretor Fr	enuation (dB)	0.0					
SPI R	equency (HZ)	114.0					
0121	itput (mVrms)	421.7					
	······			_			
			8(a).	Frequency	Weightings	1KHZ	
Time Wt		Frequency	Weighting		Teler		
Fast	Α	Ċ	Z	N/A	loier	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.2	± 0.2	
		v	X		l		
Conforming		Yes	Yes	N/A			
Uncertainty (+/-) dB	0.09]				
			8(k	o). Time We	ightings 1kl	Ηz	
			,	1	0 0		
Freq Wt		Time W	eighting		Tolor	anco	
Α	F	S	Leq		TOIER	ance	
1kHz	114.0	114.0	114.0		Type 1	Type 2	
Difference		0.0	0.0		± 0.1	± 0.1	
Conforming		Yes	Yes				
Uncertainty (+/-) dB	0.09]				
, (i)	,		1				
				Descriptio	n of Tests		
8. Frequency and time wei For a steady sinusoidal electri frequency weighting A, the ind timeaveraged sound level, as timeweighted sound level, and	ightings at 1 kH cal input signal at dications shall be available. In addi d time-averaged s	Iz (IEC 61672 1 kHz on the r recorded for fre tion, the indicat sound level, as a	-3 Clause 14) eference level ra equency weightir tions with frequer available.	nge and with an Igs C and Z, as a ncy weighting A	input signal that vailable, with the shall be recorded	yields an indica e sound level m d with the soun	tion of the reference sound pressure level with eter set to display F-time-weighted sound level, or d level meter set to display F-time-weighted sound level, S-

The measured deviation of the indication of the sound level frequency weightings and time weightings shall not exceed the acceptance limits given in IEC 61672-1.

9(a). Level Linearity 8kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	8k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1703.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	± 0.8	± 1.1
21.0	104.0	104.0	0.0	± 0.8	± 1.1
16.0	109.0	109.0	0.0	± 0.8	± 1.1
11.0	114.0	114.0	0.0	± 0.8	± 1.1
10.0	115.0	115.0	0.0	± 0.8	± 1.1
9.0	116.0	116.0	0.0	± 0.8	± 1.1
8.0	117.0	117.0	0.0	± 0.8	± 1.1
7.0	118.0	118.0	0.0	± 0.8	± 1.1
6.0	119.0	119.0	0.0	± 0.8	± 1.1
5.0	120.0	120.0	0.0	± 0.8	± 1.1
4.0	121.0	121.0	0.0	± 0.8	± 1.1
3.0	122.0	122.0	0.0	± 0.8	± 1.1
2.0	123.0	123.0	0.0	± 0.8	± 1.1
1.0	124.0	124.0	0.0	± 0.8	± 1.1
0.0	125.0	125.0	0.0	± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

9(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

9(b). Level Linearity 8kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	8k
SPL Reference Starting Point (dB)	94
Output (mVrms)	48.1
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Toler	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	± 0.8	± 1.1
10.0	84.0	84.0	0.0	± 0.8	± 1.1
15.0	79.0	79.0	0.0	± 0.8	± 1.1
20.0	74.0	74.0	0.0	± 0.8	± 1.1
25.0	69.0	69.0	0.0	± 0.8	± 1.1
30.0	64.0	64.0	0.0	± 0.8	± 1.1
35.0	59.0	59.0	0.0	± 0.8	± 1.1
40.0	54.0	54.0	0.0	± 0.8	± 1.1
45.0	49.0	49.0	0.0	± 0.8	± 1.1
49.0	45.0	45.0	0.0	± 0.8	± 1.1
50.0	44.0	44.0	0.0	± 0.8	± 1.1
51.0	43.0	43.0	0.0	± 0.8	± 1.1
52.0	42.0	42.0	0.0	± 0.8	± 1.1
53.0	41.0	41.0	0.0	± 0.8	± 1.1
54.0	40.0	40.0	0.0	± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

9(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

10. Level Linearity with Level Ranges 1kHz

10(a). Level Linearity Including the Level Range (Reference Signal)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	0
Generator Frequency (Hz)	1k
Reference SPL (dB)	114
Output (mVrms)	421.7

Settings		Level (dB)	Toler	rance	
Range	Expected	Indicated	Difference	Type 1	Type 2
HIGH	114.0	114.0	0.0	± 0.8	± 1.1
MID	114.0	114.0	0.0	± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1
				± 0.8	± 1.1

Conforming	Yes

Uncertainty (+/-) dB 0.13

10(b). Level Linearity Including the Level range (5dB Above Under-range)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Α
SLM Range	HIGH
Generator & Attenuator Settings	
Attenuation (dB)	30
Generator Frequency (Hz)	1k
Reference SPL (dB)	65
Output (mVrms)	47.3

Sett	ings		Level (dB)	Tolerance					
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2			
HIGH	30.0	65.0	65.0	0.0	±08	± 1.1			
MID	50.0	45.0	45.0	0.0	± 0.8	± 1.1			
LOW	70.0	25.0	25.2	0.2	±08	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
					± 0.8	± 1.1			
	Confo	orming	Yes						

Uncertainty (+/-) dB

Description of Tests

0.13

10. Level linearity including the level range control (IEC 61672-3 Clause 17)

For sound level meters that have more than one level range, tests of level linearity errors including errors introduced by the level range control shall be performed with steady sinusoidal electrical input signals at a frequency of 1 kHz and with the sound level meter set for frequency weighting A. For each test, signal levels shall be recorded as indications of F-time-weighted sound level or time-average sound level. (61672-3 Clause 17.1).

With the input signal level kept constant, the indicated signal level shall be recorded for all level ranges where the signal level is displayed. The indicated signal levels and the corresponding anticipated indications of signal levels shall be recorded. (61672-3 Clause 17.3).

For each level range, the level of the input signal shall then be adjusted to yield a signal level that is expected to be 5 dB greater than the signal level that first causes an indication of under-range on a level range. The indicated signal levels and the corresponding anticipated levels shall be recorded. (61672-3 Clause 17.4).

Level linearity deviations shall be calculated as an indicated signal level minus the corresponding anticipated signal level. Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1.

11. Toneburst Response							
11(a). Fast ToneBurst							
SLM Settings - Fast Time Weighting Fast Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuator Settings Attenuator Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 532.9							
Toneburst (ms) # Cycles LAFMax (dB) Tolerance 200 800 116.0 Difference Type 1 Type 2 200 800 116.0 116.0 0.0 ± 0.5 ± 1 0 2 8 99.0 98.9 -0.1 + 1.0; -1.5 + 1.0; -2.5 0.25 1 90.0 89.8 -0.2 + 1.0; -3.0 + 1.5; -5.0							
Conforming Yes Uncertainty (+/-) dB 0.09							
11(b). Slow ToneBurst							
SLM Settings - Slow Time Weighting Slow Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuation (dB) Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 117.0 Output (mVrms) 532 9							
Toneburst (ms) # Cycles LASMax (dB) Tolerance 200 800 109.6 Difference Type 1 Type 2 200 800 109.6 109.6 0.0 ± 0 5 ± 1 0 2 8 90.0 90 0.0 + 1.0; -3.0 + 1.0; -5.0							
Uncertainty (+/-) dB 0.09							
11(c). SEL ToneBurst							
SLM Settings - SEL/Leq Frequency Weighting A SLM Range MID Generator & Attenuator Settings Attenuation (dB) 0.0 Generator Frequency (Hz) 4k dB Down from Linearity Limit 3 Reference SPL (dB) 017.0 Output (mVrms) 532 9 Integration Time (if SEL not available) (s)							
Toneburst (ms) # Cycles SEL Tolerance 1ndcated Calc'd Expected Difference Type 1 200 800 110.0 110.0 0.0 ±0.5 2 8 90.0 90.0 0.0 ±10; -1.5 ±1.0; -2.5							
0.25 1 80.9 80.9 81.0 -0.1 + 1.0; -3.0 + 1.5; -5.0							
Conforming Yes							
Uncertainty (+/-) dB 0.13							
Description of Tests							
11. Toneburst response (IEC 61672-3 Clause 18) The response of the sound level meter to short-duration signals shall be tested on the reference level range with 4 kHz tonebursts. The sound level meter shall be set to frequency weighting A. (61672-3 Clause 18.1).							
For the toneburst signals, indications of the sound level meter to be recorded are maximum F-time-weighted sound level, maximum S-time-weighted sound level and sound exposure le applicable.	vel, as						
I he level of the steady input signal shall be adjusted to display an F-time-weighted, Stime-weighted, or time-averaged sound level, as appropriate, that is 3 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 4 kHz on the reference level range. (61672-3 Clause 18.4).							

Tonebursts are tested at 200ms, 2ms and, 0.25ms durations (the latter for Fast and SEL only) and the LMax or SEL recorded.

Measured deviations of the measured toneburst responses from the corresponding reference toneburst responses given in IEC 61672-1 shall not exceed the applicable

12 Peak C sound level							
				12.		Jound	
					12(a). Pe	eak C 8 KH	Z
	SI M	Sottingo			l		
	SLIVI	Tim	e Weiahtina	Fast			
		Frequenc	y Weighting	C			
			SLM Range	MID			
G	enerator & A	ttenuator Se	ttings				
		Atter	nuation (dB)	0.0			
		Referen	ce SPI (dB)	ок 112.0			
		Out	out (mVrms)	475.6			
Test Signal		dB LCp	eak Hold	D1//	Tole	rance	
8 kHz	Indication	O'Load?	Expected	Difference	Type 1 + 2 0	Type 2 + 3.0	
I Cycle	113.4	NO	115.4	0.0	± 2.0	± 0.0	
	Conformin	ng		Yes			
		() .ID		0.00	1		
U	ncertainty (+	/-) aB		0.09			
					12(h) Pe	ak C 500 H	7
					12(0).10		-
	SLM	Settings					
		Tim	e Weighting	Fast			
		Frequenc	y Weighting	C			
	oporator 8 A	ttonuator Sc	SLM Range	MID			
9		Atte	nuation (dB)	0.0			
	G	enerator Fre	quency (Hz)	500			
		Referen	ce SPL (dB)	112.0			
		Out	out (mVrms)	334.6			
Test Signal		dBICn	ak Hold		Tole	rance	
500 Hz	Indication	O'Load?	Expected	Difference	Type 1	Type 2	
One +ve 1/2 cycle	114.2	No	114.4	-0.2	± 1.0	± 2.0	
One -ve 1/2 cycle	114.2	No	114.4	-0.2	± 1.0	± 2.0	
	Conformin	a		Vas			
	Comornin	iy		165			
U	ncertainty (+	/-) dB		0.09			
Description of Tests							
12. Peak C sound leve	el (IEC 61672	-3 Clause 19)				
Indications of C-weighted peak sound level shall be tested on the least-sensitive level range. The test signals consist of (a) a single complete cycle of an 8 kHz sinusoid starting and stopping at zero crossings and (b) positive and negative half cycles of a 500 Hz sinusoid that also start and stop at zero crossings.							
The level of the steady sinusoidal 8 kHz electrical input signal, from which a single complete cycle is extracted, shall be adjusted to yield an indication of C-weighted, F-timeweighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range at 8 kHz on the leastsensitive level range. The indication of feady sound level, shall be recorded.							

The indication of C-weighted peak sound level in response to a complete cycle of the 8 kHz signal shall be recorded. Application of the complete-cycle 8 kHz signal shall not cause indication of an overload condition.

The level of the steady sinusoidal 500 Hz electrical input signal, from which positive and negative half cycles are extracted, shall be adjusted to yield an indication of C-weighted, Ftime-weighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range on the least-sensitive level range. The indications of steady sound levels shall be recorded.

The indications of C-weighted peak sound level in response to a single positive halfcycle 500 Hz signal and to a single negative half-cycle 500 Hz signal shall be recorded and reported. Applications of the 500 Hz half-cycle signals shall not cause indications of an overload condition.

13. Overload indication							
			7				
SLN	A Settings		4				
	Function	Leq	4				
	Frequency weighting		-				
Generator &	Attenuator Settings		-				
	Attenuation (dB)	0.0	-				
	Generator Frequency (Hz)	4k	1				
	Reference SPL (dB)	119.0					
	Output (mVrms)	389.9					
			-				
	Half-Cycle Sig	nal	Tolerance				
	Positive Negative	Difference	Type 1 Type 2				
Level (dB)	126.0 126.0	0.0	±1.5 ±15				
Generator Output (myrms)	1547.0 1545.0						
Conformi	na	Yes	1				
			J				
Uncertainty (+/-) dB	0.09					
· · · · ·			-				
Overload Ind	icated	No					
Overload Indicate	or Latches	N/A					
			7				
Conformi	ng	N/A					
		D	Description of Tests				
13. Overload Indication (IEC 6167	(2-3 Clause 20)						
The test of overload indication shall on	ly be performed for sound lev	el meters capab	ble of displaying time-average sound level.				
Overload indication shall be tested on t sinusoidal electrical signals at a freque	the least-sensitive level range ncy of 4 kHz shall be used.(IE	with the sound C 61672-3 Clau	I level meter set to display A-weighted, time-average sound level. Positive and negative one-half-cycle se 20.2)				
The test shall begin at an indicated tim 4 kHz. The level of the single positive on negative one-half-cycle signal. The leve	ne-averaged level for the stead one-half-cycle input signal sha els of the single one-half-cycle	dy input signal t Il be increased t e input signals th	that corresponds to 1 dB less than the upper boundary specified for the linear operating range at to the first indication of overload, to a resolution of 0.1 dB. The process shall be repeated for the single hat produced the first indications of overload shall be recorded to a resolution of 0.1 dB.				

It shall be verified that the overload indicator latches on as specified in IEC 61672-1 when an overload condition occurs.

14. High-level Stability

SLM Settings	
Time Weighting	F
Frequency Weighting	Α
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	0.0
Generator Frequency (Hz)	1k
Reference SPL (dB)	119.0
Output (mVrms)	751 3
Time Period to Apply Signal (min)	5.0
Record SPL at Conclusion of Time Period (dB)	119 0
Difference	0.0
Tolerance	± 0.1
Conforming	Yes
Uncertainty (+/-) dB	0.09

Description of Tests

14. High-level Stability (IEC 61672-3 Clause 21) The ability of a sound level meter to operate continuously in response to high signal levels without significant change in sensitivity is evaluated from the difference between the Aweighted sound levels indicated in response to a steady 1 kHz electrical signal at the beginning and end of a 5 min period of continuous exposure to the signal.

The level of the steady electrical input signal shall be that which is required to display the sound level that is 1 dB less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.

15(a). Octave Band Filter Relative Attenuation (≤2kHz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
Range	HIGH
Set dB Below Full Scale	-1
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3486.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz		
0.06				38.8					48.7			
0.13				45.2					50.1			
0.25				52.1					53.0			
0.50				73.0					70.9			
0.71												
0.77				132.9					133.0			
0.84				132.9					133.0		Tala	
0.92				132.8					133.0		Tole	ance
1.00				132.9					133.0			
1.09				132.9					133.0			
1.19				132.9					133.0			
1.30				132.9					133.0			
1.41												
2.00				45.9					40.1			
4.00				41.0					33.7			
8.00				26.4					33.5			
16.00				25.4					33.1		Class 1	Class 2
				94.1					84.3		+70/inf	+60/inf
				87.7					82.9		+60/inf	+54/inf
				80.8					80.0		+40.5/inf	+39.5/inf
				59.9					62.1		+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m				0.0					0.0		-0.4/+1.4	-0.6/+1.7
q				0.0					0.0		-0.4/+0.7	-0.6/+0.9
Lo Lo				0.1					0.0		-0.4/+0.5	-0.6/+0.7
ati				0.0					0.0		-0.4/+0.4	-0.6/+0.6
nu				0.0					0.0		-0.4/+0.5	-0.6/+0.7
Vtte				0.0					0.0		-0.4/+0.7	-0.6/+0.9
٩				0.0					0.0		-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
				87.0					92.9		+16.6/inf	+15.6/inf
				91.9					99.3		+40.5/inf	+39.5/inf
				106.5					99.5		+60/inf	+54/inf
				107.5					99.9		+70/inf	+60/inf
Ins Loss				-0.1					0.0			
							•				•	

Conforming N/A N/A N/A Yes N/A N/A N/A N/A Yes N/A

≤80dB 0.09 >80dB 0.46 Uncert (+/-) dB

Description of Test

15(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11. 13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

15(b). Octave Band Filter Relative Attenuation (>2kHz)

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	HIGH
Set dB Below Full Scale	-1.0
Attenuator dB	0.0
Reference SPL 1kHz	133.0
Output mVrms	3486.0
Noise Floor dB	-99.0

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4kHz	8kHz	16kHz	32kHz								
0.06			44.4									
0.13			50.9									
0.25			51.4									
0.50			70.7									
0.71												
0.77			133.0									
0.84			133.1								Tole	ranco
0.92			133.0								TOIC	lance
1.00			133.1									
1.09			133.1									
1.19			133.1									
1.30			133.1									
1.41												
2.00			47.3									
4.00			44.4									
8.00			50.8									
16.00			44.8								Class 1	Class 2
			88.7								+70/inf	+60/inf
			82.2								+60/inf	+54/inf
			81.7								+40.5/inf	+39.5/inf
			62.4								+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m			0.1								-0.4/+1.4	-0.6/+1.7
p			0.0								-0.4/+0.7	-0.6/+0.9
lo			0.1								-0.4/+0.5	-0.6/+0.7
lat			0.0								-0.4/+0.4	-0.6/+0.6
an c			0.0								-0.4/+0.5	-0.6/+0.7
\tte			0.0								-0.4/+0.7	-0.6/+0.9
4			0.0								-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
			85.8								+16.6/inf	+15.6/inf
			88.7								+40.5/inf	+39.5/inf
			82.3								+60/inf	+54/inf
			88.3								+70/inf	+60/inf
											-	
Ins Loss			0.1									
											•	
Conforming	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Lineart (0.00	- 004D	0.46	I						
Uncert (+	/-) ub	2000B	0.09	>0000	0.40							

Description of Test

15(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

✓ Checked

16. Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
Reference Range	MID
Attenuator dB	0.0
Reference SPL 1kHz	94.0
Output mVrms	38.9

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	Class 1	Class 2
Measured			94.3	93.9	93.9	94.0	94.0	94.0	94.0	94.0		
Ins Loss			0.3	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	4kHz	8kHz	16kHz	32kHz							Class 1	Class 2
Measured	94.0	94.0	94.0									
Ins Loss	0.0	0.0	0.0								-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	N/A								

Uncert (+/-) dB 0.09

Description of Test

16. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

10.2 Tests of relative attenuation at midband frequency 10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits ± 0,4 dB for Class 1 filters or ± 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

17(a). Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	31.5			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1518.0			
Noise Floor (dB)	-99.0			

	Increasing I	evel to Ove	rload	Toler	ance			
Atten	Expected	Indicator	Diff	Type 1	Type 2			
26.0	99.0	99.0	0.0	±0.5	±0.6			
21.0	104.0	104.0	0.0	±0.5	±0.6			
16.0	109.0	109.0	0.0	±0.5	±0.6			
11.0	114.0	114.0	0.0	±0.5	±0.6			
10.0	115.0	115.0	0.0	±0.5	±0.6			
9.0	116.0	116.0	0.0	±0.5	±0.6			
8.0	117.0	117.0	0.0	±0.5	±0.6			
7.0	118.0	118.0	0.0	±0.5	±0.6			
6.0	119.0	119.0	0.0	±0.5	±0.6			
5.0	120.0	120.0	0.0	±0.5	±0.6			
4.0	121.0	121.0	0.0	±0.5	±0.6			
3.0	122.0	122.0	0.0	±0.5	±0.6			
2.0	123.0	123.0	0.0	±0.5	±0.6			
1.0	124.0	124.0	0.0	±0.5	±0.6			
0.0	125.0	125.0	0.0	±0.5	±0.6			
	Conforming Yes							

i-----ī

Description of Tests

17(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

0.13

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

Uncertainty (+/-) dB

17(b). Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	6			
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	1k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1494.0			
Noise Floor (dB)	-99.0			

	Increasing I	evel to Ove	rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	
				_		

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

17(c). Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Select dB Over SLM Range	5			
Attenuation (dB)	31.0			
Generator Frequency (Hz)	16k			
SPL Reference Starting Point (dB)	94.0			
Output (mVrms)	1488.0			
Noise Floor (dB)	-99.0			

	ncreasing I	evel to Ove	rload	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
26.0	99.0	99.0	0.0	±0.5	±0.6	
21.0	104.0	104.0	0.0	±0.5	±0.6	
16.0	109.0	109.0	0.0	±0.5	±0.6	
11.0	114.0	114.0	0.0	±0.5	±0.6	
10.0	115.0	115.0	0.0	±0.5	±0.6	
9.0	116.0	116.0	0.0	±0.5	±0.6	
8.0	117.0	117.0	0.0	±0.5	±0.6	
7.0	118.0	118.0	0.0	±0.5	±0.6	
6.0	119.0	119.0	0.0	±0.5	±0.6	
5.0	120.0	120.0	0.0	±0.5	±0.6	
4.0	121.0	121.0	0.0	±0.5	±0.6	
3.0	122.0	122.0	0.0	±0.5	±0.6	
2.0	123.0	123.0	0.0	±0.5	±0.6	
1.0	124.0	124.0	0.0	±0.5	±0.6	
0.0	125.0	125.0	0.0	±0.5	±0.6	
				_		

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

17(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(a). Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	31.5
SPL Reference Starting Point (dB)	94
Output (mVrms)	42.8
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Tolerance		
Atten	Expected	Indicator	Diff	Type 1	Type 2	
5.0	89.0	89.0	0.0	±0.5	±0.6	
10.0	84.0	84.0	0.0	±0.5	±0.6	
15.0	79.0	79.0	0.0	±0.7	±0.9	
20.0	74.0	74.0	0.0	±0.7	±0.9	
25.0	69.0	69.0	0.0	±0.7	±0.9	
30.0	64.0	64.0	0.0	±0.7	±0.9	
35.0	59.0	59.0	0.0	±0.7	±0.9	
40.0	54.0	54.0	0.0	±0.7	±0.9	
45.0	49.0	49.0	0.0	±0.7	±0.9	
49.0	45.0	45.0	0.0	±0.7	±0.9	
50.0	44.0	44.0	0.0	±0.7	±0.9	
51.0	43.0	43.0	0.0	±0.7	±0.9	
52.0	42.0	41.9	-0.1	±0.7	±0.9	
53.0	41.0	41.0	0.0	±0.7	±0.9	
54.0	40.0	40.0	0.0	±0.7	±0.9	

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

18(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(b). Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	5
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	1kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	42.2
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Toler	ance
Atten	Expected Indicator		Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
				1	
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

18(c). Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	16kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	42.0
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Toler	ance
Atten	Expected	Expected Indicator		Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

18(c). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

19. Octave Level Ranges

19(a). Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	31.5
Reference SPL (dB)	94
Output (mVrms)	135.4

Settings			Level (dB)	Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	104.0	0.0	±05	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	±05	± 0.6
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5 ± 0.5 ± 0.5	$ \begin{array}{r} \pm 0.6 \\ \pm 0.6 \\ \pm 0.6 \end{array} $

0.13

Conforming Yes

Uncertainty (+/-) dB

19(b). Octave Level Linearity Including the Level range (1kHz)

SI M Sottings	
SEM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	1k
Reference SPL (dB)	94
Output (mVrms)	133.1

Settings			Level (dB)	Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	±05	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	±05	± 0.6
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06

Conforming Yes

Uncertainty (+/-) dB 0.13

19(c). Octave Level Linearity Including the Level range (16kHz)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Attenuation (dB)	10
Generator Frequency (Hz)	16k
Reference SPL (dB)	94
Output (mVrms)	132.6

Settings			Level (dB)		Tolerance		
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2	
HIGH	0.0	104.0	104.0	0.0	±05	± 0.6	
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6	
LOW	34.0	70.0	70.0	0.0	±05	± 0.6	
					± 0.5	±06	
					± 0.5	±06	
					± 0.5	±06	
					± 0.5	±06	
					± 0.5	±06	
					± 0.5	±06	
					± 0.5	±06	
	Confo	orming		Yes			

Uncertainty (+/-) dB 0.13

Description of Tests

19. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

20. Octave Band Filter Lower Limit

			20(a). O	ctave Ba	nd Filter	Lower L	imit (Ref	erence F	lange)	
SLM.	Attenuato	r & Genera	ator Settin	as						
Time Weighting Fast										
Reference Range MID										
	Lower	Limit for t	the Range	40						
	1	2	3	4	5	6	7	8	9	10
Freg	4 Hz	8 Hz	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz
Measured		15.0	12.2	8.4	7.1	5.3	4.8	5.4	6.9	9.2
Conforming	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	4kHz	8kHz	16kHz	32kHz						
Measured	11.7	14.6	18.0							
Conforming	Yes	Yes	Yes	N/A						
	Confor	nina		Yes						
Uncert (+/-) dB 0.09										
		.,		0.00						
	`	.,	20(b).	Octave B	and Filte	er Lower	Limit (Lo	owest Ra	nge)	
		.,	20(b).	Octave B	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato	r & Genera	20(b).	Octave B	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato	r & Genera Time V	20(b). (ator Settin Weighting	Octave B gs Fast	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato	r & Genera Time V requency V	20(b). (ator Settin Weighting Weighting	Octave B gs Fast Z	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato	r & Genera Time \ requency \ Low	20(b). (ator Settin Weighting Weighting est Range	Octave B gs Fast Z LOW	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato Fr Lower	r & Genera Time V requency V Low Limit for f	20(b). (ator Settin Weighting Weighting est Range the Range	Octave B gs Fast Z LOW 20	and Filte	er Lower	Limit (Lo	owest Ra	inge)	
SLM,	Attenuato Fi Lower 1	r & Genera Time V requency V Low Limit for t	20(b). (ator Settin Weighting Weighting est Range the Range 3	Dctave B gs Fast Z LOW 20	and Filte	er Lower	Limit (Lo	owest Ra	inge)	10
SLM,	Attenuato Fi Lower 1 4 Hz	r & Genera Time V requency V Low Limit for t 2 8 Hz	20(b). (ator Settin Weighting Weighting est Range the Range 3 16 Hz	Dctave B gs Fast Z LOW 20 4 31.5 Hz	and Filte	er Lower	Limit (Lo 7 250 Hz	owest Ra	nge) 9 1 kHz	10 2 kHz
SLM, Freq Measured	Attenuato Fi Lower 1 4 Hz	r & Genera Time V requency V Low Limit for f 2 8 Hz 14.7	20(b). (ator Settin Weighting Weighting est Range the Range 3 16 Hz 11.8	Dctave B gs Fast Z LOW 20 4 31.5 Hz 8.1	and Filte	er Lower 6 125 Hz 4.3	Limit (Lo 7 250 Hz 2.7	8 500 Hz 1.6	9 1 kHz 1.5	10 2 kHz 1.4
SLM, Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A	r & Genera Time V requency V Low Limit for f 2 8 Hz 14.7 Yes	20(b). (ator Settin Weighting Weighting est Range the Range 3 16 Hz 11.8 Yes	Dctave B gs Fast Z LOW 20 4 31.5 Hz 8.1 Yes	and Filte 5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Limit (Lo 7 250 Hz 2.7 Yes	owest Ra 8 500 Hz 1.6 Yes	9 9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A	r & Genera Time V requency V Low Limit for f 2 8 Hz 14.7 Yes	20(b). (ator Settin Weighting Weighting est Range the Range 3 16 Hz 11.8 Yes	Contave B gs Fast Z LOW 20 4 31.5 Hz 8.1 Yes	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Timit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, SLM, Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz	r & Genera Time I requency I Low Limit for 1 2 8 Hz 14.7 Yes 8kHz	20(b). (ator Settin Weighting weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz	Contave B gs Fast Z LOW 20 4 31.5 Hz 8.1 Yes 32kHz	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Timit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, SLM Freq Measured Conforming Freq Measured	Attenuato Fi Lower 1 4 Hz N/A 4kHz 2.4	r & Genera Time V requency V Low Limit for 1 2 8 Hz 14.7 Yes 8kHz 4.1	20(b). (ator Settin Weighting weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz 6.4	Contave B Solution Solut	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Timit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz 2.4 Yes	r & Genera Time V requency V Low Limit for 1 2 8 Hz 14.7 Yes 8kHz 4.1 Yes	20(b). (ator Settin Weighting weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz 6.4 Yes	Contave B gs Fast Z LOW 20 4 31.5 Hz 8.1 Yes 32kHz N/A	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Timit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4kHz 2.4 Yes	r & Genera Time V requency V Low Limit for 1 2 8 Hz 14.7 Yes 8kHz 4.1 Yes	20(b). (ator Settin Weighting weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz 6.4 Yes	Contave B Second State	5 63 Hz 6.6 Yes	6 125 Hz 4.3 Yes	7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4 Hz 2.4 Yes	r & Genera Time V requency V Lowit for 1 2 8 Hz 14.7 Yes 8kHz 4.1 Yes	20(b). (ator Settin Weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz 6.4 Yes	Contract B Second State	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Limit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes
SLM, Freq Measured Conforming Freq Measured Conforming	Attenuato Fi Lower 1 4 Hz N/A 4 Hz 2.4 Yes Conforr	r & Genera Time V requency V Lowit for 1 2 8 Hz 14.7 Yes 8kHz 4.1 Yes ming	20(b). (ator Settin Weighting est Range the Range 3 16 Hz 11.8 Yes 16kHz 6.4 Yes	Contract of the second	5 63 Hz 6.6 Yes	er Lower 6 125 Hz 4.3 Yes	Limit (Lo 7 250 Hz 2.7 Yes	8 500 Hz 1.6 Yes	9 1 kHz 1.5 Yes	10 2 kHz 1.4 Yes

20. Octave Band Filter Lower Llmit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

21(a). Third Octave Band Filter Relative Attenuation (≤31.5Hz)

SLM, Attenuator & Generator Settings						
Time Weighting	Fast					
Frequency Weighting	Z					
SLM Range	HIGH					
Set dB Below Full Scale	-1					
Attenuator dB	0.0					
Reference SPL 1kHz	133.0					
Output mVrms	3486.0					
Noise Floor dB	-99.0					

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz		
0.18										40.8		
0.33										53.1		
0.53										64.8		
0.77										69.6		
0.89												
0.92										132.4		
0.95										132.9	T . I .	
0.97										132.9	IOIE	rance
1.00										132.8		
1.03										132.9		
1.06										132.9		
1.09										132.1		
1.12												
1.30										66.2		
1.89										28.8		
3.07										24.6		
5.43										23.1	Class 1	Class 2
										92.0	+70/inf	+60/inf
										79.7	+60/inf	+54/inf
										68.0	+40.5/inf	+39.5/inf
										63.2	+16.6/inf	+15.6/inf
											-0 4/+5 3	-0.6/+5.8
										0.4	-0 4/+1 4	-0.6/+1.7
臣										-0.1	-0.4/+0.7	-0.6/+0.9
E										-0.1	-0.4/+0.5	-0.6/+0.7
ti										0.1	-0.4/+0.4	-0.6/+0.6
n										-0.1	-0.4/+0.5	-0.6/+0.7
ttei										-0.1	-0 4/+0 7	-0.6/+0.9
Ā										0.7	-0 4/+1 4	-0.6/+1.7
										0.1	-0 4/+5 3	-0.6/+5.8
										66.6	+16 6/inf	+15 6/inf
										104.0	+40 5/inf	+39 5/inf
			-	-						104.0	+60/inf	+54/inf
										100.2	+70/inf	+60/inf
										103.7	+10/III	+00/111
Ins Loss										-0.2	1	
											1	
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes		
						-						
Uncert (+	/-) dB	≤80dB	0.09	>80dB	0.46							

Description of Test

21(a) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

21(b). Third Octave Band Filter Relative Attenuation (40Hz-315Hz)

SLM, Attenuator & Generator Settings								
Time Weighting	Fast							
Frequency Weighting	Z							
SLM Range	HIGH							
Set dB Below Full Scale	-1.0							
Attenuator dB	0.0							
Reference SPL 1kHz	133.0							
Output mVrms	3486.0							
Noise Floor dB	-99.0							

Ratio	1	2	3	4	5	6	7	8	9	10				
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz				
0.18									45.9					
0.33									49.0					
0.53									58.9					
0.77									70.8					
0.89														
0.92									132.7		Tolerance			
0.95									133.1					
0.97									133.0					
1.00									133.0					
1.03									133.0					
1.06									133.0					
1.09									132.2					
1.12														
1.30									58.1					
1.89									51.6					
3.07									26.8					
5.43									25.7		Class 1	Class 2		
									87.1		+70/inf	+60/inf		
									84.0		+60/inf	+54/inf		
									74.1		+40.5/inf	+39.5/inf		
									62.2		+16.6/inf	+15.6/inf		
											-0.4/+5.3	-0.6/+5.8		
m									0.3		-0.4/+1.4	-0.6/+1.7		
dh									-0.1		-0.4/+0.7	-0.6/+0.9		
u									0.0		-0.4/+0.5	-0.6/+0.7		
ati									0.0		-0.4/+0.4	-0.6/+0.6		
n									0.0		-0.4/+0.5	-0.6/+0.7		
Vtte									0.0		-0.4/+0.7	-0.6/+0.9		
<									0.8		-0.4/+1.4	-0.6/+1.7		
											-0.4/+5.3	-0.6/+5.8		
									74.9		+16.6/inf	+15.6/inf		
									81.4		+40.5/inf	+39.5/inf		
									106.2		+60/inf	+54/inf		
									107.3		+70/inf	+60/inf		
											-			
Ins Loss									0.0					
											1			
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A	1			

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(b) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be $(1 \pm 0,1)$ dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.
21(c). Third Octave Band Filter Relative Attenuation (400Hz-3.15kHz)

SLM, Attenuator & Generator Settings					
Time Weighting	Fast				
Frequency Weighting	Z				
SLM Range	HIGH				
Set dB Below Full Scale	-1.0				
Attenuator dB	0.0				
Reference SPL 1kHz	133.0				
Output mVrms	3486.0				
Noise Floor dB	-99.0				

Ratio	1	2	3	4	5	6	7	8	9	10		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz		
0.18					46.0							
0.33					48.3							
0.53					57.6							
0.77					70.6							
0.89												
0.92					132.7							
0.95					133.0						Tala	
0.97					133.0						TOIE	ance
1.00					133.0							
1.03					133.0							
1.06					133.0							
1.09					132.2							
1.12												
1.30					58.1							
1.89					51.7							
3.07					29.4							
5.43					28.9						Class 1	Class 2
					87.0						+70/inf	+60/inf
					84.7						+60/inf	+54/inf
					75.4						+40.5/inf	+39.5/inf
					62.4						+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
m					0.3						-0.4/+1.4	-0.6/+1.7
p					0.0						-0.4/+0.7	-0.6/+0.9
io					0.0						-0.4/+0.5	-0.6/+0.7
rat					0.0						-0.4/+0.4	-0.6/+0.6
ant					0.0						-0.4/+0.5	-0.6/+0.7
Atte					0.0						-0.4/+0.7	-0.6/+0.9
					0.8						-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
					74.9						+16.6/inf	+15.6/inf
					81.3						+40.5/inf	+39.5/inf
					103.6						+60/inf	+54/inf
					104.1						+70/inf	+60/inf
Ins Loss					0.0							
											-	
Conformina	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A		

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(c) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation
13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.
13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0,1) dB below the specified upper boundary of the linear operating range.
13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies

21(d). Third Octave Band Filter Relative Attenuation (≥4kHz)

SLM, Attenuator & Generator Settings						
Time Weighting						
Frequency Weighting	Z					
SLM Range	HIGH					
Set dB Below Full Scale	-1.0					
Attenuator dB	0.0					
Reference SPL 1kHz	133.0					
Output mVrms	3486.0					
Noise Floor dB	-99.0					

Ratio	1	2	3	4	5	6	- 1	8	9	10		
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz		
0.18							46.6					
0.33							49.1					
0.53							52.1					
0.77							70.5					
0.89												
0.92							132.7					
0.95							133.1					
0.97							133.0				lole	rance
1.00							133.1					
1.03							133.0					
1.06							133.0					
1.09							132.3					
1.12												
1.30							58.3					
1.89							42.5					
3.07							39.1					
5.43							47.5				Class 1	Class 2
							86.5				+70/inf	+60/inf
							84.0				+60/inf	+54/inf
							81.0				+40.5/inf	+39.5/inf
							62.6				+16.6/inf	+15.6/inf
											-0.4/+5.3	-0.6/+5.8
~							0.4				-0.4/+1.4	-0.6/+1.7
뜅							0.0				-0.4/+0.7	-0.6/+0.9
5							0.1				-0.4/+0.5	-0.6/+0.7
ati							0.0				-0.4/+0.4	-0.6/+0.6
nu							0.1				-0.4/+0.5	-0.6/+0.7
tte							0.1				-0.4/+0.7	-0.6/+0.9
<							0.8				-0.4/+1.4	-0.6/+1.7
											-0.4/+5.3	-0.6/+5.8
							74.8				+16.6/inf	+15.6/inf
							90.6				+40.5/inf	+39.5/inf
							94.0				+60/inf	+54/inf
							85.6				+70/inf	+60/inf
Ins Loss							0.1					
											•	
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	Yes	N/A	N/A	N/A		
						-						

Uncert (+/-) dB ≤80dB 0.09 >80dB 0.46

Description of Test

21(d) Octave Filter (IEC 61260-3 Clause 13)

13 Measurement of relative attenuation

13.1 The relative attenuation on the reference level range shall be tested for the same three filters as selected in Clause 11.

13.2 The measurements of relative attenuation are made as the response to constant amplitude sinusoidal signals at various frequencies. The level of the input signals shall be (1 ± 0.1) dB below the specified upper boundary of the linear operating range.

13.6 The measured relative attenuation shall not exceed the acceptance limits given in Table 1 for the appropriate class of filter.

Interpretation: The three filters specified in "Clause 11" are 31.5Hz, 1kHz and 16kHz unless the client expands this range. The limits in "Table 1" are the Tolerance values shown in green above. The yellow cells are the observed values. The "Attenuation dB" cells are the attenuation values of each filter with the filter's centre frequency attenuation assumed to be zero (i.e. the relative attenuation). The "Ins Loss" are the actual values of attenuation at the filter centre frequencies.

22. Third Octave Band Filter Relative Attenuation at Midband Frequency

SLM, Attenuator & Generator Setting	gs
Time Weighting	Fast
Frequency Weighting	Z
Reference Range	MID
Attenuator dB	0.0
Reference SPL 1kHz	94.0
Output mVrms	38.9

	1	2	3	4	5	6	7	8	9	10	Tole	rance
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz	Class 1	Class 2
Measured							94.3	94.1	93.9	93.9		
Ins Loss							0.3	0.1	-0.1	-0.1	-0.4/+0.4	-0.6/+0.6
Conforming	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes	Yes		
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	Class 1	Class 2
Measured	93.9	93.9	93.9	93.9	94.0	94.0	94.1	94.0	94.0	94.0		
Ins Loss	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.1	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	Class 1	Class 2
Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0		
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Freq	4kHz	5kHz	6 3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31 5kHz	Class 1	Class 2

Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz	Class 1	Class 2
Measured	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0				
Ins Loss	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			-0.4/+0.4	-0.6/+0.6
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A		

Uncert (+/-) dB 0.09

Description of Test

22. Octave Band Filter Relative Attenuation at Midband Frequency (IEC 61260-3 Clause 10.2)

10.2 Tests of relative attenuation at midband frequency

10.2.1 The relative attenuation at the exact midband frequency shall be measured for every filter in a set of filters. The relative attenuation $\Delta A(\Omega)$ at any midband frequency is determined from Formula (8) given in IEC 61260-1:2014. The reference level range shall be selected for the test. The level of the test signal shall be equal to the reference input signal level.

10.2.2 The measured relative attenuation shall not exceed the acceptance limits \pm 0,4 dB for Class 1 filters or \pm 0,6 dB for class 2 filters as specified in 5.10 in IEC 61260-1:2014.

Interpretation: The yellow cells are the observed values. The "Ins Loss" are the actual values of attenuation at the filter centre frequencies. The "Conforming" cells demonstrate compliance with the Tolerance limits depending upon the Class of filter.

23(a). Third Octave Band Filter Level Linearity 31.5Hz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	6
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	31.5
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1518.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolera	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(a). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(b). Third Octave Band Filter Level Linearity 1kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	1k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1493.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolera	ance
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6

Conforming Yes

Uncertainty (+/-) dB 0.13

Description of Tests

23(b). Filter Level linearity on the reference level range (IEC 61260-3 Clause 11)

The level linearity shall be tested for three filters in a set of filters. For a set of filters covering the audible range of frequencies, it is recommended to test filters with frequencies close to 31.5 Hz,1 kHz and 16 kHz.

The test shall be performed on the reference level range for levels from the specified lower boundary of the specified linear operating range up to a level where the overload indicator displays an overload. Adjust the level of the input signal with steps that are not greater than 5 dB. The difference between successive steps of the input signal level shall be reduced to 1 dB when the distance to the lower or upper boundaries of a linear operating range is less than 5 dB and when the level is above the upper boundary. The boundaries are as stated in the instruction manual for the filter. If no overload is displayed, the filter does not conform to the requirements.

The measured level linearity deviation shall not exceed the acceptance limits given in 5.13 in IEC 61260-1:2014 for all measured levels between the lower boundary of the linear operating range, as stated in the instruction manual for the filter, and up to the highest level, measured as described above, without an overload indication.

An overload shall not be indicated if the level of the input signal is below the stated upper boundary of each appropriate linear operating range.

"Y" means indicator over-range.

23(c). Third Octave Band Filter Level Linearity 16kHz (Increasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Over SLM Range	5
Attenuation (dB)	31.0
Generator Frequency (Hz)	16k
SPL Reference Starting Point (dB)	94.0
Output (mVrms)	1488.0
Noise Floor (dB)	-99.0

	ncreasing I	evel to Ove	rload	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
26.0	99.0	99.0	0.0	±0.5	±0.6
21.0	104.0	104.0	0.0	±0.5	±0.6
16.0	109.0	109.0	0.0	±0.5	±0.6
11.0	114.0	114.0	0.0	±0.5	±0.6
10.0	115.0	115.0	0.0	±0.5	±0.6
9.0	116.0	116.0	0.0	±0.5	±0.6
8.0	117.0	117.0	0.0	±0.5	±0.6
7.0	118.0	118.0	0.0	±0.5	±0.6
6.0	119.0	119.0	0.0	±0.5	±0.6
5.0	120.0	120.0	0.0	±0.5	±0.6
4.0	121.0	121.0	0.0	±0.5	±0.6
3.0	122.0	122.0	0.0	±0.5	±0.6
2.0	123.0	123.0	0.0	±0.5	±0.6
1.0	124.0	124.0	0.0	±0.5	±0.6
0.0	125.0	125.0	0.0	±0.5	±0.6
				1	
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

23(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the starting number of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator over-range.

24(a). Third Octave Band Filter Level Linearity 31.5Hz (Decreasing)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings	5			
Select dB Under SLM Range	0			
Attenuation (dB)	0.0			
Generator Frequency (Hz)	31.5			
SPL Reference Starting Point (dB)	94			
Output (mVrms)	42.8			
Noise Floor (dB)	-99.0			

D	ecreasing le	evel to Unde	erange	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	43.9	-0.1	±0.7	±0.9
51.0	43.0	42.9	-0.1	±0.7	±0.9
52.0	42.0	41.9	-0.1	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(a). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(b). Third Octave Band Filter Level Linearity 1kHz (Decreasing)

SLM Settings					
Time Weighting	Fast				
Frequency Weighting	Z				
SLM Range	MID				
Generator & Attenuator Settings					
Select dB Under SLM Range	0				
Attenuation (dB)	0.0				
Generator Frequency (Hz)	1kHz				
SPL Reference Starting Point (dB)	94				
Output (mVrms)	42.2				
Noise Floor (dB)	-99.0				

Decreasing level to Unde			erange	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	39.9	-0.1	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(b). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

24(c). Third Octave Band Filter Level Linearity 16kHz (Decreasing)

SLM Settings	
Time Weighting	Fast
Frequency Weighting	Z
SLM Range	MID
Generator & Attenuator Settings	
Select dB Under SLM Range	0
Attenuation (dB)	0.0
Generator Frequency (Hz)	16kHz
SPL Reference Starting Point (dB)	94
Output (mVrms)	42.0
Noise Floor (dB)	-99.0

D	ecreasing le	evel to Unde	erange	Tolerance	
Atten	Expected	Indicator	Diff	Type 1	Type 2
5.0	89.0	89.0	0.0	±0.5	±0.6
10.0	84.0	84.0	0.0	±0.5	±0.6
15.0	79.0	79.0	0.0	±0.7	±0.9
20.0	74.0	74.0	0.0	±0.7	±0.9
25.0	69.0	69.0	0.0	±0.7	±0.9
30.0	64.0	64.0	0.0	±0.7	±0.9
35.0	59.0	59.0	0.0	±0.7	±0.9
40.0	54.0	54.0	0.0	±0.7	±0.9
45.0	49.0	49.0	0.0	±0.7	±0.9
49.0	45.0	45.0	0.0	±0.7	±0.9
50.0	44.0	44.0	0.0	±0.7	±0.9
51.0	43.0	43.0	0.0	±0.7	±0.9
52.0	42.0	42.0	0.0	±0.7	±0.9
53.0	41.0	41.0	0.0	±0.7	±0.9
54.0	40.0	40.0	0.0	±0.7	±0.9
	Conformi	ng	Yes		

Uncertainty (+/-) dB 0.13

Description of Tests

24(c). Level linearity on the reference level range (IEC 61672-3 Clause 16)

Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. (61672-3 Clause 16.1).

Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level from the first indication of an under-range condition.

Measured level linearity deviations shall not exceed the applicable acceptance limits given in IEC 61672-1 from the specified upper boundary of the linear operating range up to, but not including, the first indication of overload and also from the specified lower boundary of the linear operating range down to, but not including, the first indication of an under-range condition.

"Y" means indicator under-range. However, if 20dB above noise floor is reached then no results are reported.

25. Third Octave Level Ranges

25(a). Third Octave Level Linearity Including the Level range (31.5Hz)

SLM Settings					
Time Weighting	Fast				
Frequency Weighting	Z				
SLM Range	MID				
Generator & Attenuator Settings					
Attenuation (dB)	10				
Generator Frequency (Hz)	31.5				
Reference SPL (dB)	94				
Output (mVrms)	135.4				

Settings		Level (dB)			Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	±05	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	±05	± 0.6
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06

0.13

Conforming Yes

Uncertainty (+/-) dB

25(b). Third Octave Level Linearity Including the Level range (1kHz)

SLM Settings			
Time Weighting	Fast		
Frequency Weighting	Z		
SLM Range	MID		
Generator & Attenuator Settings			
Attenuation (dB)	10		
Generator Frequency (Hz)	1k		
Reference SPL (dB)	94		
Output (mVrms)	133.2		

Settings		Level (dB)			Tolerance	
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2
HIGH	0.0	104.0	103.9	-0.1	±05	± 0.6
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6
LOW	34.0	70.0	70.0	0.0	±05	± 0.6
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06
					± 0.5	±06

Conforming Yes

Uncertainty (+/-) dB 0.13

25(c). Third Octave Level Linearity Including the Level range (16kHz)

SLM Settings				
Time Weighting	Fast			
Frequency Weighting	Z			
SLM Range	MID			
Generator & Attenuator Settings				
Attenuation (dB)	10			
Generator Frequency (Hz)	16k			
Reference SPL (dB)	94			
Output (mVrms)	132.6			

Settings		Level (dB)			Tolerance				
Range	Atten	Expected	Indicated	Difference	Type 1	Type 2			
HIGH	0.0	104.0	104.0	0.0	±05	± 0.6			
MID	14.0	90.0	90.0	0.0	± 0.5	± 0.6			
LOW	34.0	70.0	70.0	0.0	±05	± 0.6			
					± 0.5	±06			
					± 0.5	±06			
					± 0.5	±06			
					± 0.5	±06			
					± 0.5	±06			
					± 0.5	±06			
					± 0.5	±06			
	Confo	orming	Yes						

Uncertainty (+/-) dB 0.13

Description of Tests

25. Filter Level linearity including the level range control (IEC 61260-3 Clause 11.9)

11.9 For the same three filters as selected above, test each available level range in the following way: based on the same reference level, adjust the input level to be 30 dB below upper boundary of the linear operating range for each of the selected range settings. The measured level linearity deviation shall not exceed the acceptance limits given in 5.13.3 and 5.13.4 of IEC 61260-1:2014

The three filter frequencies are 31.5Hz, 1kHz and 16kHz.

The level linearity differences are calculated as the indicated signal level minus the corresponding expected signal level.

26. Third Octave Band Filter Lower Limit

SLM,	Attenuato	r & Genera	ator Setting	gs						
Time Weighting Fast										
Frequency Weighting										
Lowest Range			MID							
Lower Limit for the Range				40						
	1	2	3	4	5	6	7	8	9	10
rea	4H 7	5Hz	6.3Hz	8H7	10Hz	12 5Hz	16Hz	20Hz	25Hz	31 5Hz
Veasured		0.12	11.6	8.8	8.9	7.2	6.1	5.6	4.9	4.3
Conforming	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
req	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz
leasured	3.6	4.1	1.5	0.9	1.0	0.0	0.5	0.4	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
req	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz
leasured	0.5	0.7	0.9	1.7	1.9	2.7	3.4	4.3	5.2	5.9
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
req	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
leasured	6.8	7.8	8.8	9.7	10.8	11.9	13.1	14.5		
onforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A
Conforming Yes]					
Uncert (+/-) dB 0.09					1					
			26(b). (Octave B	and Filte	er Lower	Limit (Lo	owest Ra	an <mark>ge)</mark>	
					1		-			
SLM,	Attenuato	r & Genera	ator Setting	gs						
		Time	Neighting	Fast						
Frequency Weighting Z										

26(a). Octave Band Filter Lower Limit (Reference Range)

	Lower Limit for the Range			20						
	1	2	3	4	5	6	7	8	9	10
Freq	4Hz	5Hz	6.3Hz	8Hz	10Hz	12.5Hz	16Hz	20Hz	25Hz	31.5Hz
Measured	N/A	N/A	9.7	10.7	8.2	8.7	7.2	6.2	4.6	3.8
contenting	N/A	N/A	163	163	165	163	165	163	163	163
Freq	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz
Measured	2.6	2.2	1.4	0.7	0.0	0.0	0.0	0.0	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz
Measured	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Freq	4kHz	5kHz	6.3kHz	8kHz	10kHz	12.5kHz	16kHz	20kHz	25kHz	31.5kHz
Measured	0.0	0.0	0.0	0.0	0.0	0.7	1.6	2.5		
Conforming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A

Conforming	Yes		
Uncert (+/-) dB	0.09		

26. Third Octave Band Filter Lower LImit (IEC 61260-3 Clause 12)

12.2 Short-circuit the input terminal or use similar means to ensure that the level of the input signal is below the lower limit of the specified linear operating range. Record the output level from each filter in the set. The output level shall not exceed the specified lower limit for the appropriate filter and range.

Interpretation: The yellow cells are the observed values. The measured value must not exceed the Lower Limit for the Range.

✓ Checked

Appendix C Real-time vibration monitoring results

Figure 4 - Realtime vibration monitoring results

